A Relation Between h-Index and Impact Factor in the Power-Law Model

Link

Peer-reviewed author version

Made available by Hasselt University Library in Document Server@UHasselt

Reference (Published version):

DOI: 10.1002/asi.21144
Handle: http://hdl.handle.net/1942/10234
A relation between h-index and impact factor in the power law model

Leo Egghe¹, Liming Liang ²,³, Ronald Rousseau ¹,⁴,⁵

¹ Hasselt University, Agoralaan, 3590 Diepenbeek, Belgium
E-mail: leo.egghe@uhasselt.be

² Institute for Science, Technology and Society, Henan Normal University, Xinxiang, 453002, P.R. China.

³ School of Humanities and Social Science, Dalian University of Technology, Dalian, 116024, P.R. China
E-mail: liangliming1949@sina.com

⁴ KHBO (Association K.U.Leuven), Industrial sciences and Technology, B-8400 Oostende, Belgium
E-mail: ronald.rousseau@khbo.be

⁵ K.U.Leuven, Department of Mathematics, Celestijnenlaan 200B, 3001 Leuven (Heverlee), Belgium

Abstract

Using a power law model, the two best known topics in citation analysis, namely the impact factor and the Hirsch index are unified into one relation (not a function). Our model is, at least in a qualitative way, confirmed by real data.

Introduction

The h-index (Hirsch, 2005) and the impact factor (Garfield, 2006) are undoubtedly the best-known scientometric indicators. It has been shown in previous articles that the idea of calculating an impact factor or an h-index can be applied to many source-item relations and in many timeframes (Egghe, 2009; Egghe & Rousseau, 2006; Frandsen & Rousseau, 2005; Rousseau et al., 2008; Liang & Rousseau, 2009). The reader is referred to these articles for the exact definition of an h-index and an impact factor in the general case, i.e. using any time window.

In this note we will propose a general relation (not a function!) in the power law model. When stating that this relation is not a function we mean that with one h-index value many impact factors may correspond and vice versa.
The power-law framework in which the model is developed

We adapt the framework described in (Egghe, 2005) and consider a given size-frequency function \(f: [1, \infty[\rightarrow]0, C] \) of the form

\[
f(j) = \frac{C}{j^\alpha}
\]

where \(C > 0 \) and \(\alpha > 2 \). In a discrete setting \(f(j) \) refers to the number of sources with production \(j \) (or in the concrete setting of this article: the number of articles that received \(j \) citations). In a continuous framework \(f \) is interpreted as a density. So, we have two free parameters: \(C \) and \(\alpha \). We recall that in (Egghe & Rousseau, 2006, Appendix), see also (Egghe, 2005, Exercise II.2.2.6, p.134) we proved that this setting is equivalent to a setting using the rank-frequency function \(g(r) \):

\[
g(r) = \frac{B}{r^\beta}, \text{ with } B, \beta > 0 \text{ (corresponding to the parameters } C \text{ and } \alpha \text{) and } r \in]0, T].
\]

Here \(T \) denotes the total number of sources (concretely: published articles). The relations between the parameters are:

\[
B = \left(\frac{C}{\alpha - 1} \right)^{\frac{1}{\alpha - 1}} \quad \text{or} \quad C = B^{\alpha - 1}(\alpha - 1)
\]

(2)

\[
\beta = \frac{1}{\alpha - 1} \quad \text{or} \quad \alpha = \frac{1 + \beta}{\beta}
\]

(3)

Recall also that

\[
T = \frac{C}{\alpha - 1}
\]

(4)

and that the total number of items (citations received) is, in this framework equal to \(\frac{C}{\alpha - 2} \), which we assume to be strictly larger than 1.

We will work further in the size-frequency framework. Recall that in (Egghe & Rousseau, 2006) we showed that, in this framework,

\[
h = T^{\alpha - 1} = \left(\frac{C}{\alpha - 1} \right)^{\alpha - 1}
\]

(5)

We further recall (Egghe, 2005, p. 115) that, for \(\alpha > 2 \):

\[
IF = \mu = \frac{\alpha - 1}{\alpha - 2}
\]

(6)
where \(\mu \) denotes the average production. Note that our model is only applicable if \(IF > 1 \). Equation (6) clearly shows that when investigating the relation between \(h \) and \(IF \), \(\alpha \) cannot be fixed as otherwise \(IF \) would also be fixed. Further also \(C \) will be taken to be a variable parameter.

A mathematical relation

From equation (6) we deduce that

\[
\alpha = \frac{2\, IF - 1}{IF - 1}
\]

(7)

This relation can also be found in (Egghe, 2005; p. 115). Combining equations (5) and (7) yields:

\[
h = \left(\frac{C}{\frac{2\, IF - 1}{IF - 1} - 1} \right)^{\frac{IF - 1}{2\, IF - 1}}
\]

(8)

or:

\[
h(C, IF) = \left(C \frac{IF - 1}{IF} \right)^{\frac{IF - 1}{2\, IF - 1}} = \left(C \left(1 - \frac{1}{IF} \right) \right)^{\frac{IF - 1}{2\, IF - 1}}
\]

(9)

Keeping \(C \) fixed and calculating the first derivative of \(h(IF) \), it is not difficult to show that \(h'(IF) \) is positive, which proves that \(h \) is an increasing function of \(IF \). Although we are able to calculate the second derivative \(h''(IF) \) we are not able to determine its sign. Through numerical calculations we found that \(h''(IF) \) is first convex and then concave. The inflection point is, however, always situated between \(IF = 1.27 \) and \(IF = 1.9 \) (for \(C \) between 1 and 10,000). This means that in practice this function can always be considered to be concave. Note also that

\[
\lim_{IF \to \infty} h(IF) = \lim_{IF \to \infty} \left(C \frac{IF - 1}{IF} \right)^{\frac{IF - 1}{2\, IF - 1}} = \sqrt{C}.
\]

This is not only easy to check, but it also follows naturally from the power law theory. Indeed: if IF tends to \(\infty \), then, by (7), \(\alpha \) tends to 2, and, by (5), \(h \) tends to \(\sqrt{\frac{C}{IF}} = \sqrt{C} \) (by (4), where \(\alpha = 2 \)). Figures 1 and 2 illustrate the mathematical form of \(h(C, IF) \) for various values of \(C \).
Fig. 1. The h-index (h) as a function of the impact factor (IF) for different values of C.

Fig. 2. For small values of IF and high C-values the inflection point (in the model) becomes visible.

We further note that if h and IF are given, C can be calculated from equation (9), leading to:

$$C = \frac{IF}{IF - 1} h^{\frac{2IF-1}{IF-1}}$$

(10)
Real data

In this section we investigate if it is possible to find real curves resembling those shown in Figures 1 and 2. We collected the IF (year 2007) for all 304 journals in the eight JCR physics categories: applied; atomic, molecular & chemical; condensed matter; fluids & plasmas; mathematical; multidisciplinary; nuclear; particles & fields. Defining a review journal as a journal for which, according to the WoS classification, more than 50% of its articles are review articles, we removed 22 review journals. Moreover, 122 journals with IF smaller than 1 were also removed (our theory is only valid if IF > 1). For the remaining 160 journals we calculated an h-index and a rational h-index, denoted as h_{rat}, based on the same time period as the IF, i.e. using citations in the year 2007 and publications in the year 2005 and 2006. More information on the rational h-index can be found in (Ruane & Tol, 2008; Guns & Rousseau, 2009). For fitting purposes we prefer the rational h-index as it corresponds better to our real-valued model. Using equation (10) we obtained the corresponding C-value. Note that we claim that there is an $h(\text{IF})$-curve for each C-value separately. As it is not feasible to check this for real data, we grouped our data into four quartiles, depending on the C-value. For each of the four groups we determined a best-fitting curve (equation (9)), using the non-linear least squares procedure, see Table 1 for results and R^2-values. Fitting results are shown in Figures 3-6. The term 'predicted' refers to the piecewise linear line obtained by connecting the points with coordinates consisting of the real IF-value and the h-value derived from the best fitting curve. Clearly, our model corresponds to the observed data, at least in a qualitative way.

<table>
<thead>
<tr>
<th>Quartile</th>
<th>C-range of real data</th>
<th>Best-fitting C-value</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>23-760</td>
<td>366.04</td>
<td>0.74</td>
</tr>
<tr>
<td>II</td>
<td>761-2,700</td>
<td>1,471.6</td>
<td>0.87</td>
</tr>
<tr>
<td>III</td>
<td>2,701-23,000</td>
<td>4,311.33</td>
<td>0.93</td>
</tr>
<tr>
<td>IV</td>
<td>23,000-1,000,000</td>
<td>52,405.2</td>
<td>0.35</td>
</tr>
</tbody>
</table>
Figure 3. The rational h-index as a function of the impact factor (first quartile)

Figure 4. The rational h-index as a function of the impact factor (second quartile)
In a first version we had among the journals in the first quartile the *JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS*. Its coordinates in Fig. 3 were (6.067, 3.857), which made it a clear outlier. We checked the data and found that according to the JCR this journal’s 372 articles had been cited 2,257 times in 2007 (only for articles published in the years 2005 and 2006), leading to a (high) impact factor of 6.067, while in the Web of Science, we found the same 372 articles, but this time they were cited only 93 times leading to a (low) h-index of 3.857. Clearly one of the two data sources is wrong. Hence we deleted this journal from our data. Anyway, we consider this fact (finding - in this way - an error in the Thomson Reuters database) as a point in favor of our model.
It is remarkable that for our data high \(C \)-values correspond to a low impact factor. This is not a theoretical necessity (at least not in our model), but it may be interesting to find out why this is the case. For the fourth quartile we could not find a fit (\(R^2 \) is negative). For this reason we only considered \(C \)-values in the range 23,000-1,000,000 (this data range refers to 25 of the 40 original data). Higher \(C \)-values can be considered to be unrealistic, and not covered by our model. Recall that \(C \) is the density of the size-frequency function for \(j = 1 \) (see eq. (1)). In this way we obtained a fit, although it is not very good. Yet it is clear that the data show a convex trend, as predicted by our model.

We also tried to find a fit for the second and third quartile combined. Although this was possible, the \(R^2 \)-value was not very high (\(R^2 = 0.4 \)). Moreover, data points that clearly fitted the equation for one quartile became outliers in the combined case. This result confirms the fact that the relation between IF and \(h \) is not a function.

We further note that Vanclay’s article (Vanclay, 2008) is the only one we know that shows a graphical relation between the standard impact factor (IF) and an \(h \)-index. This \(h \)-index is, however, not the two-year one used by us. In this graph the relation between IF and \(h \) can be considered to be roughly linear. In relation to our theory nothing much can be derived of this graph.

Conclusion

We have shown a direct relation between any \(h \)-index and the corresponding impact factor in the power law model. This relation is, however, not a function. It is shown that this model corresponds, at least to a large extent, to real data.

Acknowledgement

The work of Liming Liang and Ronald Rousseau is supported by the National Natural Science Foundation of China through grant no. 70673019. This work was finished while R.R. was a guest at the Carlos III University of Madrid. He thanks Prof. E. Sanz Casado and his research group for their hospitality during his visit.

References

