www.uhasselt.be
DSpace

Document Server@UHasselt >
Research >
Research publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/9001

Title: A Comparison of Doubly Hierarchical Discriminant Analyses for Multiple Class Longitudinal Data from EEG Experiments
Authors: Wouters, Kristien
Cortinas Abrahantas, Jose
Molenberghs, Geert
Ahnaou, Abdellah
Drinkenburg, W.H.I.M.
Bijnens, Luc
Issue Date: 2008
Publisher: TAYLOR & FRANCIS INC
Citation: JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 18(6). p. 1120-1135
Abstract: This paper proposes a general and simple procedure that can be applied to establish classification rules for application to multiple-class longitudinal data. The procedure is applied to preclinical pharmaco-electroencephalogram (EEG) studies aiming at characterizing psychotropic drug effects on the basis of spectral EEG analysis. It is a flexible hierarchical supervised learning tool that takes into account the specific nature of the multiple drug classes, as well as the longitudinal aspect of the data. Several variations of this procedure are applied to the EEG data, generally producing comparable results, in particular similar association between the sleeping stages and the psychotropic drug classes.
Notes: [Wouters, Kristien; Abrahantes, Jose Cortinas; Molenberghs, Geert] Univ Hasselt, B-3590 Diepenbeek, Belgium. [Wouters, Kristien; Abrahantes, Jose Cortinas; Molenberghs, Geert] Katholieke Univ Leuven, Louvain, Belgium. [Ahnaou, Abdellah; Drinkenburg, Wilhelmus H. I. M.; Bijnens, Luc] Johnson & Johnson Pharmaceut Res & Dev, Beerse, Belgium.
URI: http://hdl.handle.net/1942/9001
DOI: 10.1080/10543400802369111
ISI #: 000260764800006
ISSN: 1054-3406
Category: A1
Type: Journal Contribution
Validation: ecoom, 2009
Appears in Collections: Research publications

Files in This Item:

Description SizeFormat
Published version207.33 kBAdobe PDF
Peer-reviewed author version183.85 kBAdobe PDF

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.