www.uhasselt.be
DSpace

Document Server@UHasselt >
Research >
Research publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/778

Title: Construction of weak and strong similarity measures for ordered sets of documents using fuzzy set techniques
Authors: EGGHE, Leo
Michel, Ch.
Issue Date: 2003
Publisher: Elsevier
Citation: Information Processing & Management, 39(5). p. 771-807
Abstract: Ordered sets of documents are encountered more and more in information distribution systems, such as information retrieval systems. Classical similarity measures for ordinary sets of documents hence need to be extended to these ordered sets. This is done in this paper using fuzzy set techniques. First a general similarity measure is developed which contains the classical strong similarity measures such as Jaccard, Dice, Cosine and which contains the classical weak similarity measures such as Recall and Precision. Then these measures are extended to comparing fuzzy sets of documents. Measuring the similarity for ordered sets of documents is a special case of this, where, the higher the rank of a document, the lower its weight is in the fuzzy set. Concrete forms of these similarity measures are presented. All these measures are new and the ones for the weak similarity measures are the first of this kind (other strong similarity measures have been given in a previous paper by Egghe and Michel). Some of these measures are then tested in the IR-system Profil-Doc. The engine SPIRITĀ© extracts ranked documents sets in three different contexts, each for 600 request. The practical useability of the OS-measures is then discussed based on these experiments.
URI: http://hdl.handle.net/1942/778
DOI: 10.1016/S0306-4573(02)00027-4
ISI #: 000184327400006
ISSN: 0306-4573
Category: A1
Type: Journal Contribution
Validation: ecoom, 2004
Appears in Collections: Research publications

Files in This Item:

Description SizeFormat
Published version1.67 MBAdobe PDF
Non peer-reviewed author version839.36 kBAdobe PDF

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.