Document Server@UHasselt >
Research >
Research publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/5686

Title: Diagnostic test analyses in search of their gold standard: latent class analyses with random effects
Liinev, J.
Boelaert, M.
van der Stuyft, P.
Issue Date: 2000
Publisher: ARNOLD
Citation: Statistical methods in medical research: an international review journal, 9(3). p. 231-248
Abstract: We review methods for analysing the performance of several diagnostic tests when patients must be classified as having a disease or not, when no gold standard is available. For latent class analysis (LCA) to provide consistent estimates of sensitivity, specificity and prevalence, traditionally `independent errors conditional on disease status' have been assumed. Recent approaches derive estimators under more flexible assumptions. However, all likelihood-based approaches suffer from the sparseness of tables generated by this type of data; an issue which is often ignored. In light of this, we examine the potential and limitations of LCAs of diagnostic tests. We are guided by a data set of visceral leishmaniasis tests. In the example, LCA estimates suggest that the traditional reference test, parasitology, has poor sensitivity and underestimates prevalence. From a technical standpoint, including more test results in one analysis yields increasing degrees of sparseness in the table which are seen to lead to discordant values of asymptotically equivalent test statistics and eventually lack of convergence of the LCA algorithm. We suggest some strategies to cope with this.
URI: http://hdl.handle.net/1942/5686
DOI: 10.1177/096228020000900304
ISI #: 000089881800004
ISSN: 0962-2802
Category: A1
Type: Journal Contribution
Appears in Collections: Research publications

Files in This Item:

There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.