www.uhasselt.be
DSpace

Document Server@UHasselt >
Research >
Research publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/5065

Title: Blowing up of non-commutative smooth surfaces
Authors: VAN DEN BERGH, Michel
Issue Date: 2001
Publisher: AMER MATHEMATICAL SOC
Citation: MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 154(734). p. 1-+
Abstract: In this paper we will think of certain abelian categories with favorable properties as non-commutative surfaces. We show that under certain conditions a point on a non-commutative surface can be blown up. This yields a new non-commutative surface which is in a certain sense birational to the original one. This construction is analogous to blowing up a Poisson surface at a point of the zero-divisor of the Poisson bracket. By blowing up less than or equal to 8 points in the elliptic quantum plane one obtains global non-commutative deformations of Del-Pezzo surfaces. For example blowing up six points yields a non-commutative cubic surface. Under a number of extra hypotheses we obtain a formula for the number of non-trivial simple objects on such noncommutative surfaces.
URI: http://hdl.handle.net/1942/5065
ISI #: 000170649800001
ISSN: 0065-9266
Category: A1
Type: Journal Contribution
Appears in Collections: Research publications

Files in This Item:

There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.