Document Server@UHasselt >
Research >
Research publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/4751

Title: Reducing redundancy in characteristic rule discovery by using IP-techniques
Authors: BRIJS, Tom
WETS, Geert
Issue Date: 1999
Citation: Workshop on Pre- and Postprocessing in Machine Learning: Theoretical Aspects and Applications, Chania , Crete, July 5-16,1999.
Abstract: The discovery of characteristic rules is a well-known data mining technique and has lead to several succesful applications. Unfortunately, typically a (very) large number of rules is discovered during the mining stage. This makes monitoring and control of these rules extremely costly and difficult. Therefore, a selection of the most promising rules is desirable. In this paper, we propose an integer programming model to solve the problem of selecting the most promising subset of characteristic rules. The proposed technique allows to control a user-defined level of overall quality of the model in combination with a maximum reduction of the redundancy extant in the original ruleset. We use real-world data to evaluate the performance of the proposed technique against the well known RuleCover heuristic.
URI: http://hdl.handle.net/1942/4751
Type: Conference Material
Appears in Collections: Research publications

Files in This Item:

Description SizeFormat
N/A115.45 kBAdobe PDF

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.