www.uhasselt.be
DSpace

Document Server@UHasselt >
Research >
Research publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/4298

Title: A corner-cutting scheme for hexagonal subdivision surfaces
Authors: CLAES, Johan
BEETS, Koen
VAN REETH, Frank
Issue Date: 2002
Publisher: IEEE Computer Society Press
Citation: SHAPE MODELING AND APPLICATIONS, PROCEEDINGS. p. 13-20.
Abstract: In their recent paper about how the duality between subdivision surface schemes leads to higher-degree continuity, Zorin and Schroder consider only quadrilateral subdivision schemes. The dual of a quadrilateral scheme is again a quadrilateral scheme, while the dual of a triangular scheme is a hexagonal scheme. In this paper we propose such a hexagonal scheme, which can be considered a dual to Kobbelt's Sqrt(3) scheme for triangular meshes. We introduce recursive subdivision rules for meshes with arbitrary topology,, given a minimal support optimizing the surface continuity area. These rules have a simplicity comparable to the Doo-Sabin scheme: only new vertices of one type are introduced and every subdivision step removes the vertices of the previous steps. As hexagonal meshes are not encountered frequently in practice, we describe two different techniques to convert triangular meshes into hexagonal ones.
URI: http://hdl.handle.net/1942/4298
Link to publication: http://doi.ieeecomputersociety.org/10.1109/SMA.2002.1003523
ISI #: 000176641600003
ISBN: 0-7695-1546-0
Category: C1
Type: Proceedings Paper
Validation: ecoom, 2003
Appears in Collections: Research publications

Files in This Item:

There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.