Document Server@UHasselt >
Research >
Research publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2997

Title: Perspectives on bone mechanical properties and adaptive response to mechanical challenge
Authors: Jiang, YB
Zhao, J
Rosen, C
Genant, HK
Issue Date: 1999
Citation: JOURNAL OF CLINICAL DENSITOMETRY, 2(4). p. 423-433
Abstract: The bones of the human skeleton serve a mechanical function besides providing a reservoir for calcium and hematopoietic homeostasis. When mechanically challenged, they usually respond and adapt; failure to do so can result in fracture. The mechanical behavior of bone is determined by bone mass and its material proper ties and by its geometry and architecture. Therefore, in vivo noninvasive measurements of bone mass, geometry, and structure can predict bone strength and are usually employed as a useful-if not always reliable-way to estimate bone fragility, whereas direct bone biomechanical testing in vitro can provide detailed information about mechanical strength. Because bone strains are likely to be important regulators of bone mass and strength, exercise protocols designed to counteract the effects of osteoporosis should load the target bone with repeated high peak forces and high strain rates or high impacts on a long-term basis. Such a protocol creates varied strain distributions throughout the bone structure, producing short, repeated strains on the bone in directions to which it is unaccustomed. Exercise in this manner can maintain and perhaps increase bone mass and improve mechanical properties and neuromuscular competency, reducing skeletal fragility and the predisposition to falls.
Notes: Univ Calif San Francisco, Dept Radiol, Osteoporosis & Arthrit Res Grp, San Francisco, CA 94143 USA. Univ Maine, St Joseph Hosp, Maine Ctr Osteoporosis Res & Educ, Bangor, ME 04401 USA. Limburgs Univ Ctr, Clin Res Ctr Bone & Joint Dis, Dr L Willems Inst, Diepenbeek, Belgium.Jiang, YB, Univ Calif San Francisco, Dept Radiol, Osteoporosis & Arthrit Res Grp, San Francisco, CA 94143 USA.
URI: http://hdl.handle.net/1942/2997
DOI: 10.1016/S1094-6950(06)60408-3
ISI #: 000085084200009
ISSN: 1094-6950
Type: Journal Contribution
Validation: ecoom, 2001
Appears in Collections: Research publications

Files in This Item:

There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.