Document Server@UHasselt >
Research >
Research publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/29949

Title: Phase transitions in persistent and run-and-tumble walks
Authors: Proesmans, Karel
Toral, Raul
Van den Broeck, Christian
Issue Date: 2019
Status: In Press
Abstract: We calculate the large deviation function of the end-to-end distance and the corre-spondingextension-versus-forcerelationfor(isotropic)randomwalks,onandoff-lattice,withandwithoutpersistence,andinanyspatialdimension.Foroff-latticerandomwalkswith persistence, the large deviation function undergoes a first order phase transitionin dimensiond>5. In the corresponding force-versus-extension relation, the extensionbecomes independent of the force beyond a critical value. The transition is anticipatedin dimensionsd=4 andd=5, where full extension is reached at a finite value of theapplied stretching force. Full analytic details are revealed in the run-and-tumble limit.Finally,on-latticerandomwalkswithpersistencedisplayasofteningphaseindimensiond=3 and above, preceding the usual stiffening appearing beyond a critical value of theforce.
URI: http://hdl.handle.net/1942/29949
DOI: 10.1016/j.physa.2019.121934
ISSN: 0378-4371
Category: A1
Type: Journal Contribution
Appears in Collections: Research publications

Files in This Item:

Description SizeFormat
Peer-reviewed author version1.52 MBAdobe PDF

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.