www.uhasselt.be
DSpace

Document Server@UHasselt >
Research >
Research publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/27473

Title: Synthesis, characterization and thermodynamic stability of nanostructured ε-iron carbonitride powder prepared by a solid-state mechanochemical route
Authors: Rounaghi, Seyyed Amin
Vanpoucke, Danny E. P.
Esmaeili, E.
Scudino, S.
Eckert, J.
Issue Date: 2019
Citation: JOURNAL OF ALLOYS AND COMPOUNDS, 778, p. 327-336
Abstract: Nanostructured epsilon iron carbonitride (ε-Fe3CxN1-x, x ~ 0.05) powder with high purity (>97 wt%) was synthesized through a simple mechanochemical reaction between metallic iron and melamine. Various characterization techniques were employed to investigate the chemical and physical characteristics of the milling intermediates and the final products. The thermodynamic stability of the different phases in the Fe-C-N ternary system, including nitrogen and carbon doped structures were studied through density functional theory (DFT) calculations. A Boltzmann-distribution model was developed to qualitatively assess the stability and the proportion of the different milling products vs. milling energy. The theoretical and experimental results revealed that the milling products mainly comprise the ε-Fe3CxN1-x phase with a mean crystallite size of around 15 nm and a trace of amorphous carbon material. The thermal stability and magnetic properties of the milling products were thoroughly investigated. The synthesized ε-Fe3CxN1-x exhibited thermal stabilities up to 473 K and 673 K in air and argon atmospheres, respectively, and soft magnetic properties with a saturation magnetization of around 125 emu/g.
URI: http://hdl.handle.net/1942/27473
DOI: 10.1016/j.jallcom.2018.11.007
ISSN: 0925-8388
Category: A1
Type: Journal Contribution
Appears in Collections: Research publications

Files in This Item:

Description SizeFormat
Published version2.13 MBAdobe PDF
Peer-reviewed author version1.2 MBAdobe PDF

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.