www.uhasselt.be
DSpace

Document Server@UHasselt >
Research >
Research publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2549

Title: Comparing complete and partial classification for identifying customers at risk
Authors: BLOEMER, Johanna
BRIJS, Tom
VANHOOF, Koen
SWINNEN, Gilbert
Issue Date: 2003
Publisher: ELSEVIER SCIENCE BV
Citation: INTERNATIONAL JOURNAL OF RESEARCH IN MARKETING, 20(2). p. 117-131
Abstract: This paper evaluates complete versus partial classification for the problem of identifying customers at risk. We define customers at risk as customers reporting overall satisfaction, but these customers also possess characteristics that are strongly associated with dissatisfied customers. This definition enables two viable methodological approaches for identifying such customers, i.e. complete and partial classification. Complete classification entails the induction of a classification model to discriminate between overall dissatisfied and overall satisfied instances, where customers at risk are defined as overall satisfied customers who are classified as overall dissatisfied. Partial classification entails the induction of the most prevalent characteristics of overall dissatisfied customers in order to discover overall satisfied customers who match these characteristics. In our empirical work, we evaluate complete and partial classification techniques and compare their performance on both quantitative and qualitative criteria. The intent of the paper is not on proving the superiority of partial classification, but rather to provide an alternative and valuable approach that offers new and different insights. In fact, taking predictive accuracy as the performance criterion, results for this study show the superiority of the complete classification approach. On the other hand, partial classification offers additional insights that complete classification techniques do not offer, i.e. it offers a rule-based description of criteria that lead to dissatisfaction for locally dense regions in the multidimensional instance space. (C) 2003 Elsevier Science B.V. All rights reserved.
Notes: Univ Nijmegen, Nijmegen Sch Management, NL-6500 HK Nijmegen, Netherlands. Limburgs Univ Ctr, B-3590 Diepenbeek, Belgium.Bloemer, JMM, Univ Nijmegen, Nijmegen Sch Management, POB 9108, NL-6500 HK Nijmegen, Netherlands.
URI: http://hdl.handle.net/1942/2549
DOI: 10.1016/S0167-8116(03)00014-4
ISI #: 000183470800001
ISSN: 0167-8116
Category: A1
Type: Journal Contribution
Validation: ecoom, 2004
Appears in Collections: Research publications

Files in This Item:

There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.