Document Server@UHasselt >
Research >
Research publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/24879

Title: ANOVA model for network meta-analysis of diagnostic test accuracy data
Authors: Nyaga, Victoria N.
Aerts, Marc
Arbyn, Marc
Issue Date: 2016
Citation: Statistical Methods in Medical Research, 27 (6), 1766-1784
Status: In Press
Abstract: Procedures combining and summarising direct and indirect evidence from independent studies assessing the diagnostic accuracy of different tests for the same disease are referred to network meta-analysis. Network meta-analysis provides a unified inference framework and uses the data more efficiently. Nonetheless, handling the inherent correlation between sensitivity and specificity continues to be a statistical challenge. We developed an arm-based hierarchical model which expresses the logit transformed sensitivity and specificity as the sum of fixed effects for test, correlated study-effects to model the inherent correlation between sensitivity and specificity and a random error associated with various tests evaluated in a given study. We present the accuracy of 11 tests used to triage women with minor cervical lesions to detect cervical precancer. Finally, we compare the results with those from a contrast-based model which expresses the linear predictor as a contrast to a comparator test. The proposed arm-based model is more appealing than the contrastbased model since the former permits more straightforward interpretation of the parameters, makes use of all available data yielding shorter credible intervals, and models more natural variance–covariance matrix structures.
Notes: Arbyn, M (reprint author), Belgian Canc Ctr, Sci Inst Publ Hlth, Unit Canc Epidemiol, Brussels, Belgium. marc.arbyn@wiv-isp.be
URI: http://hdl.handle.net/1942/24879
DOI: 10.1177/0962280216669182
ISI #: 000432625800012
ISSN: 0962-2802
Category: A1
Type: Journal Contribution
Appears in Collections: Research publications

Files in This Item:

Description SizeFormat
Published version491.52 kBAdobe PDF

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.