Document Server@UHasselt >
Research >
Research publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/24357

Title: The Manin Hopf algebra of a Koszul Artin-Schelter regular algebra is quasi-hereditary
Authors: Raedschelders, Theo
Van den Bergh, Michel
Issue Date: 2017
Citation: ADVANCES IN MATHEMATICS, 305, p. 601-660
Abstract: For any Koszul Artin-Schelter regular algebra A, we consider the universal Hopf algebra (aut) under bar (A) coacting on A, introduced by Manin. To study the representations (i.e. finite dimensional comodules) of this Hopf algebra, we use the Tannaka-Krein formalism. Specifically, we construct an explicit combinatorial rigid monoidal category U, equipped with a functor M to finite dimensional vector spaces such that (aut) under bar (A) = coendu(M). Using this pair (U, M) we show that (aut) under bar (A) is quasi-hereditary as a coalgebra and in addition is derived equivalent to the representation category of U. (C) 2016 Elsevier Inc. All rights reserved.
Notes: [Raedschelders, Theo] Vrije Univ Brussel, Dept Wiskunde, Pleinlaan 2, B-1050 Brussels, Belgium. [Van den Bergh, Michel] Univ Hasselt, Dept WNI, Univ Campus, B-3590 Diepenbeek, Belgium.
URI: http://hdl.handle.net/1942/24357
DOI: 10.1016/j.aim.2016.09.017
ISI #: 000406169200014
ISSN: 0001-8708
Category: A1
Type: Journal Contribution
Appears in Collections: Research publications

Files in This Item:

Description SizeFormat
Published version815.06 kBAdobe PDF
Non peer-reviewed author version538.34 kBAdobe PDF

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.