Document Server@UHasselt >
Research >
Research publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/23986

Title: Multiscale measurement error models for aggregated small area health data
Authors: Aregay, Mehreteab
Lawson, Andrew B.
Faes, Christel
Kirby, Russell S.
Carroll, Rachel
Watjou, Kevin
Issue Date: 2016
Abstract: Spatial data are often aggregated from a finer (smaller) to a coarser (larger) geographical level. The process of data aggregation induces a scaling effect which smoothes the variation in the data. To address the scaling problem, multiscale models that link the convolution models at different scale levels via the shared random effect have been proposed. One of the main goals in aggregated health data is to investigate the relationship between predictors and an outcome at different geographical levels. In this paper, we extend multiscale models to examine whether a predictor effect at a finer level hold true at a coarser level. To adjust for predictor uncertainty due to aggregation, we applied measurement error models in the framework of multiscale approach. To assess the benefit of using multiscale measurement error models, we compare the performance of multiscale models with and without measurement error in both real and simulated data. We found that ignoring the measurement error in multiscale models underestimates the regression coefficient, while it overestimates the variance of the spatially structured random effect. On the other hand, accounting for the measurement error in multiscale models provides a better model fit and unbiased parameter estimates.
URI: http://hdl.handle.net/1942/23986
DOI: 10.1177/0962280216661094
ISI #: 000382871200008
ISSN: 0962-2802
Category: A1
Type: Journal Contribution
Validation: ecoom, 2017
Appears in Collections: Research publications

Files in This Item:

Description SizeFormat
Published version1.26 MBAdobe PDF

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.