Document Server@UHasselt >
Research >
Research publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/22744

Title: Derived equivalences for hereditary Artin algebras
Authors: Stanley, Donald
van Roosmalen, Adam-Christiaan
Issue Date: 2016
Citation: ADVANCES IN MATHEMATICS, 303, p. 415-463
Abstract: We study the role of the Serre functor in the theory of derived equivalences. Let A be an abelian category and let (U, V) be a t-structure on the bounded derived category DbA with heart H. We investigate when the natural embedding H -> D(b)A can be extended to a triangle equivalence (DH)-H-b -> D(b)A. Our focus of study is the case where A is the category of finite dimensional modules over a finite-dimensional hereditary algebra. In this case, we prove that such an extension exists if and only if the t-structure is bounded and the aisle U of the t-structure is closed under the Serre functor. (C) 2016 Elsevier Inc. All rights reserved.
Notes: [Stanley, Donald] Univ Regina, Dept Math & Stats, Regina, SK S4S 4A5, Canada. [van Roosmalen, Adam-Christiaan] Univ Hasselt, Dept WNI, Campus Diepenbeek, B-3590 Diepenbeek, Belgium.
URI: http://hdl.handle.net/1942/22744
DOI: 10.1016/j.aim.2016.08.016
ISI #: 000386192700013
ISSN: 0001-8708
Category: A1
Type: Journal Contribution
Validation: ecoom, 2017
Appears in Collections: Research publications

Files in This Item:

Description SizeFormat
Published version807.44 kBAdobe PDF
Peer-reviewed author version1.03 MBAdobe PDF

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.