Document Server@UHasselt >
Research >
Research publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/22068

Title: Acid-Induced Room Temperature RAFT Polymerization: Synthesis and Mechanistic Insights
Authors: Vandenbergh, Joke
Schweitzer-Chaput, Bertrand
Klussmann, Martin
Junkers, Thomas
Issue Date: 2016
Citation: MACROMOLECULES, 49(11), p. 4124-4135
Abstract: An acid-induced cydohexanone/tert-butylhydroperoxide initiation system for ambient temperature reversible addition fragmentation transfer (RAFT) polymerization of vinyl monomers is presented. The reaction system is optimized for the synthesis of poly(n-butyl acrylate) of various chain length. The polymerization shows typical living characteristics and polymers with dispersities close to 1.1 are obtained. Analysis of the polymer end groups by means of soft ionization mass spectrometry reveals the typical distribution of polymer containing both R and Z RAFT end groups and a minor distribution of a RAFT polymer carrying a cyclohexanone end group in alpha position. This observation demonstrates that the polymerization is initiated solely by ketone radicals despite a relatively complex initiation mechanism that involves several intermediates. The room, temperature-derived homopolymers are successfully chain extended with tert-butyl acrylate resulting in well-defined block copolymer structures. To demonstrate the versatility of the approach, the room temperature RAFT polymerization is also applied to synthesize styrene and N-isopropylacrylamide, yielding best results for polystyrene. Finally, also a bisperoxide structure is tested as an alternative for the ketone/peroxide mixture. Polymerization proceeds substantially faster in this case and successful controlled polymerization to full conversion is achieved even at 0 degrees C. In general the proposed room temperature RAFT technique is very easy to carry out, in principle easily up scalable, metal free and shows high potential toward the synthesis of well-defined temperature sensitive materials.
Notes: [Vandenbergh, Joke; Junkers, Thomas] Hasselt Univ, Inst Mat Res IMO, Polymer React Design Grp, Campus Diepenbeek,Bldg D, B-3590 Diepenbeek, Belgium. [Schweitzer-Chaput, Bertrand; Klussmann, Martin] Max Planck Inst Kohlenforsch, Kaiser Wilhelm Pl 1, D-45470 Mulheim, Germany. [Junkers, Thomas] IMEC Div IMOMEC, Wetenschapspk 1, B-3590 Diepenbeek, Belgium.
URI: http://hdl.handle.net/1942/22068
DOI: 10.1021/acs.macromol.6b00192
ISI #: 000378016200014
ISSN: 0024-9297
Category: A1
Type: Journal Contribution
Validation: ecoom, 2017
Appears in Collections: Research publications

Files in This Item:

Description SizeFormat
Published version2.54 MBAdobe PDF

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.