Document Server@UHasselt >
Research >
Research publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/21702

Title: n-Type phosphorus-doped nanocrystalline diamond: electrochemical and in situ Raman spectroelectrochemical study
Authors: Zivcova, Z. Vlckova
Frank, O.
Drijkoningen, Sien
Haenen, Ken
Mortet, Vincent
Kavan, L.
Issue Date: 2016
Citation: RSC ADVANCES, 6 (56), p. 51387-51393
Abstract: Electrochemical and in situ Raman spectroelectrochemical characterization of n-type phosphorus-doped nanocrystalline diamond (P-NCD) is carried out. The P-NCD films are grown by microwave plasma enhanced chemical vapour deposition and doped with phosphorus at a concentration of 10 000 ppm in the gas phase. Micro-Raman spectroscopy determines the film quality (presence of graphitic or amorphous phases). All electrochemical measurements are performed in aqueous 0.5 M H2SO4 electrolyte solution. Electrochemical impedance spectroscopy (EIS) confirms the n-type conduction of a P-NCD electrode and from the Mott-Schottky plot the donor concentration (N-D) of 1.8 x 10(18) cm(-3) is determined. The in situ Raman spectroelectrochemistry is performed in the potential range from -1.5 to 1.5 V vs. Ag/AgCl using two laser excitations (633 nm and 488 nm). In the case of the as-prepared PNCD film, the Raman modes belonging to non-diamond (sp(2)) impurities change their intensities during applied potentials. The intensity of such Raman peaks increases at cathodic potentials, while at anodic potentials they disappear. On the other hand, the intensity and position of the sp(3) diamond peak (1334 cm(-1)) exhibit no spectroelectrochemical changes and the same holds for the photoluminescence peak (at 1.68 eV) assigned to Si-impurities. After several cyclic voltammetry (CV) scans, the electrochemical potential window of a P-NCD electrode increases. This is due to the "electrochemical burning" of impurities at large anodic potentials, which is also confirmed by in situ Raman spectroelectrochemistry. Angle-resolved XPS confirms partial electrochemical oxidation of P-NCD in thin surface layers.
Notes: [Zivcova, Z. Vlckova; Frank, O.; Kavan, L.] AS CR, J Heyrovsky Inst Phys Chem, Dept Electrochem Mat, Vvi, Dolejskova 3, Prague 18223 8, Czech Republic. [Drijkoningen, S.; Haenen, K.] Hasselt Univ, Inst Mat Res IMO, Wetenschapspk 1, B-3590 Diepenbeek, Belgium. [Haenen, K.] IMEC VZW, IMOMEC, Wetenschapspk 1, B-3590 Diepenbeek, Belgium. [Mortet, V.] AS CR, Inst Phys, Vvi, Slovance 2, Prague 18221 8, Czech Republic. [Mortet, V.] Czech Tech Univ, Fac Biomed Engn, Sitna 3105, Kladno 27201, Czech Republic.
URI: http://hdl.handle.net/1942/21702
DOI: 10.1039/c6ra05217g
ISI #: 000377515200114
ISSN: 2046-2069
Category: A1
Type: Journal Contribution
Validation: ecoom, 2017
Appears in Collections: Research publications

Files in This Item:

Description SizeFormat
published version602.33 kBAdobe PDF

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.