Document Server@UHasselt >
Research >
Research publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/21664

Title: Automatic Calibration of Soccer Scenes Using Feature Detection
Authors: Goorts, Patrik
Maesen, Steven
Liu, Yunjun
Dumont, Maarten
Bekaert, Philippe
Lafruit, Gauthier
Issue Date: 2015
Publisher: Springer International Publishing
Citation: Obaidat, M.S.; Holzinger, A.; Filipe, J. (Ed.). E-Business and Telecommunications: 11th International Joint Conference, ICETE 2014, Vienna, Austria, August 28-30, 2014, Revised Selected Papers, p. 418-434
Series/Report: Communications in Computer and Information Science
Series/Report no.: 554
Abstract: In this paper, we present a method to calibrate large scale camera networks for multi-camera computer vision applications in soccer scenes. The calibration process determines camera parameters, both within each camera (focal length, principal point, etc.) and inbetween the cameras (their relative position and orientation). We first extract candidate image correspondences over adjacent cameras, without using any calibration object, relying on existing feature matching methods. We then combine these pairwise camera feature matches over all adjacent cameras using a confident-based voting mechanism and a selection relying on the general displacement across the images. Experiments show that this removes a large amount of outliers before using existing calibration toolboxes dedicated to small scale camera networks, that would otherwise fail to work properly in finding the correct camera parameters over large scale camera networks. We succesfully validate our method on real soccer scenes.
Notes: [Goorts, Patrik; Maesen, Steven; Liu, Yunjun; Dumont, Maarten; Bekaert, Philippe; Lafruit, Gauthier] Hasselt Univ, tUL, iMinds, Expertise Ctr Digital Media, Wetenschapspk 2, B-3590 Diepenbeek, Belgium.
URI: http://hdl.handle.net/1942/21664
DOI: 10.1007/978-3-319-25915-4_22
ISI #: 000369316300022
ISBN: 9783319259147
ISSN: 1865-0929
Category: B2
Type: Book Section
Validation: ecoom, 2017
Appears in Collections: Research publications

Files in This Item:

Description SizeFormat
published version10.69 MBAdobe PDF

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.