www.uhasselt.be
DSpace

Document Server@UHasselt >
Research >
Research publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/21552

Title: Numerically finite hereditary categories with serre duality
Authors: van Roosmalen, Adam-Christiaan
Issue Date: 2016
Publisher: AMER MATHEMATICAL SOC
Citation: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 368 (10), p. 7189-7238
Abstract: Let A be an abelian hereditary category with Serre duality. We provide a classification of such categories up to derived equivalence under the additional condition that the Grothendieck group modulo the radical of the Euler form is a free abelian group of finite rank. Such categories are called numerically finite and this condition is satisfied by the category of coherent sheaves on a smooth projective variety.
Notes: [van Roosmalen, Adam-Christiaan] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Sokolovska 83, Prague 18675 8, Czech Republic. [van Roosmalen, Adam-Christiaan] Hasselt Univ, Dept Math & Stat, B-3590 Diepenbeek, Belgium.
URI: http://hdl.handle.net/1942/21552
DOI: 10.1090/tran/6569
ISI #: 000372533200013
ISSN: 0002-9947
Category: A1
Type: Journal Contribution
Validation: ecoom, 2017
Appears in Collections: Research publications

Files in This Item:

Description SizeFormat
published version920.97 kBAdobe PDF

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.