Document Server@UHasselt >
Research >
Research publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/2081

Title: Invariant manifolds of dynamical systems close to a rotation: Transverse to the rotation axis
Authors: BONCKAERT, Patrick
Fontich, E
Issue Date: 2005
Citation: JOURNAL OF DIFFERENTIAL EQUATIONS, 214(1). p. 128-155
Abstract: We consider one parameter families of vector fields depending on a parameter E such that for epsilon = 0 the system becomes a rotation of R-2 x R-n around {0} x R-n and such that for epsilon > 0 the origin is a hyperbolic singular point of saddle type with, say, attraction in the rotation plane and expansion in the complementary space. We look for a local subcenter invariant manifold extending the stable manifolds to epsilon = 0. Afterwards the analogous case for maps is considered. In contrast with the previous case the arithmetic properties of the angle of rotation play an important role. (c) 2005 Elsevier Inc. All rights reserved.
Notes: Univ Barcelona, Dept Matemat Aplicada & Anal, E-08007 Barcelona, Spain. Limburgs Univ Centrum, B-3590 Diepenbeek, Belgium.Fontich, E, Univ Barcelona, Dept Matemat Aplicada & Anal, Gran Via Corts Catalanes,585, E-08007 Barcelona, Spain.fontich@mat.ub.es
URI: http://hdl.handle.net/1942/2081
DOI: 10.1016/j.jde.2005.02.012
ISI #: 000229861300005
ISSN: 0022-0396
Category: A1
Type: Journal Contribution
Validation: ecoom, 2006
Appears in Collections: Research publications

Files in This Item:

There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.