Document Server@UHasselt >
Research >
Research publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/18791

Title: Descending from infinity: Convergence of tailed distributions
Authors: VAN DEN BROECK, Christian
Harbola, Upendra
Toral, Raul
Lindenberg, Katja
Issue Date: 2015
Citation: PHYSICAL REVIEW E, 91 (1)
Abstract: We investigate the relaxation of long-tailed distributions under stochastic dynamics that do not support such tails. Linear relaxation is found to be a borderline case in which long tails are exponentially suppressed in time but not eliminated. Relaxation stronger than linear suppresses long tails immediately, but may lead to strong transient peaks in the probability distribution. We also find that a delta-function initial distribution under stronger than linear decay displays not one but two different regimes of diffusive spreading.
Notes: [Van den Broeck, Christian] Hasselt Univ, B-3500 Hasselt, Belgium. [Harbola, Upendra] Indian Inst Sci, Inorgan & Phys Chem, Bangalore 560012, Karnataka, India. [Toral, Raul] Univ Illes Balears, CSIC, IFISC Inst Fis Interdisciplinar & Systemas Comple, Palma de Mallorca 07122, Spain. [Lindenberg, Katja] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Lindenberg, Katja] Univ Calif San Diego, BioCircuits Inst, La Jolla, CA 92093 USA.
URI: http://hdl.handle.net/1942/18791
DOI: 10.1103/PhysRevE.91.012128
ISI #: 000351956100003
ISSN: 2470-0045
Category: A1
Type: Journal Contribution
Validation: ecoom, 2016
Appears in Collections: Research publications

Files in This Item:

Description SizeFormat
N/A539.56 kBAdobe PDF

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.