Document Server@UHasselt >
Research >
Research publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/18766

Title: Crystallization, phase evolution and corrosion of Fe-based metallic glasses: An atomic-scale structural and chemical characterization study
Authors: Duarte, M. J.
Kostka, A.
Jimenez, J. A.
Choi, P.
Klemm, J.
Crespo, D.
Raabe, D.
Issue Date: 2014
Citation: ACTA MATERIALIA, 71, p. 20-30
Abstract: Understanding phase changes, including their formation and evolution, is critical for the performance of functional as well as structural materials. We analyze in detail microstructural and chemical transformations of the amorphous steel Fe50Cr15Mo14C15B6 during isothermal treatments at temperatures ranging from 550 to 800 degrees C. By combining high-resolution transmission electron microscopy and Rietveld analyses of X-ray diffraction patterns together with the local chemical data obtained by atom probe tomography, this research provides relevant information at the atomic scale about the mechanisms of crystallization and the subsequent phases evolution. During the initial stages of crystallization a stable (Fe,Cr)(23)(C,B)(6) precipitates as well as two metastable intermediates of M-3(C,B) and the intermetallic chi-phase. When full crystallization is reached, only a percolated nano-scale Cr-rich (Fe,Cr)(23)(C,B)(6) and Mo-rich eta-Fe3Mo3C structure is detected, with no evidence to suggest that other phases appear at any subsequent time. Finally, the corrosion behavior of the developed phases is discussed from considerations of the obtained atomic information. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Notes: Corresponding author at: Max-Planck Institut für Eisenforschung GmbH, 40237 Düsseldorf, Germany. E-mail address: j.duarte@mpie.de (M.J. Duarte).
URI: http://hdl.handle.net/1942/18766
DOI: 10.1016/j.actamat.2014.02.027
ISI #: 000336695100003
ISSN: 1359-6454
Category: A1
Type: Journal Contribution
Validation: ecoom, 2015
Appears in Collections: Research publications

Files in This Item:

Description SizeFormat
published version3.31 MBAdobe PDF

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.