www.uhasselt.be
DSpace

Document Server@UHasselt >
Research >
Research publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/18293

Title: Slow divergence integrals in generalized Lienard equations near centers
Authors: HUZAK, Renato
DE MAESSCHALCK, Peter
Issue Date: 2014
Publisher: UNIV SZEGED, BOLYAI INSTITUTE
Citation: ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS (66), p. 1-10
Abstract: Using techniques from singular perturbations we show that for any n >= 6 and m >= 2 there are Lienard equations {x = y - F(x), y = G ( x)}, with F a polynomial of degree n and G a polynomial of degree m, having at least 2[n-2/2] + [m/2] hyperbolic limit cycles, where [center dot] denotes "the greatest integer equal or below".
Notes: [Huzak, Renato; De Maesschalck, Peter] Hasselt Univ, B-3590 Diepenbeek, Belgium.
URI: http://hdl.handle.net/1942/18293
ISI #: 000347538200001
ISSN: 1417-3875
Category: A1
Type: Journal Contribution
Validation: ecoom, 2016
Appears in Collections: Research publications

Files in This Item:

Description SizeFormat
N/A367.63 kBAdobe PDF

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.