Document Server@UHasselt >
Research >
Research publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/15943

Title: Automatic Particle Detection in Microscopy Using Temporal Correlations
Authors: Roding, Magnus
Deschout, Hendrik
Martens, Thomas
Hofkens, Johan
Braeckmans, Kevin
Sarkka, Aila
Rudemo, Mats
Issue Date: 2013
Citation: MICROSCOPY RESEARCH AND TECHNIQUE, 76 (10), p. 997-1006
Abstract: One of the fundamental problems in the analysis of single particle tracking data is the detection of individual particle positions from microscopy images. Distinguishing true particles from noise with a minimum of false positives and false negatives is an important step that will have substantial impact on all further analysis of the data. A common approach is to obtain a plausible set of particles from a larger set of candidate particles by filtering using manually selected threshold values for intensity, size, shape, and other parameters describing a particle. This introduces subjectivity into the analysis and hinders reproducibility. In this paper, we introduce a method for automatic selection of these threshold values based on maximizing temporal correlations in particle count time series. We use Markov Chain Monte Carlo to find the threshold values corresponding to the maximum correlation, and we study several experimental data sets to assess the performance of the method in practice by comparing manually selected threshold values from several independent experts with automatically selected threshold values. We conclude that the method produces useful results, reducing subjectivity and the need for manual intervention, a great benefit being its easy integratability into many already existing particle detection algorithms. Microsc. Res. Tech., 76:997-1006, 2013. (c) 2013 Wiley Periodicals, Inc.
URI: http://hdl.handle.net/1942/15943
DOI: 10.1002/jemt.22260
ISI #: 000325009900004
ISSN: 1059-910X
Category: A1
Type: Journal Contribution
Validation: ecoom, 2014
Appears in Collections: Research publications

Files in This Item:

Description SizeFormat
N/A473.13 kBAdobe PDF

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.