www.uhasselt.be
DSpace

Document Server@UHasselt >
Research >
Research publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/15310

Title: The Hirsch index of a shifted Lotka function and its relation with the impact factor
Authors: EGGHE, Leo
ROUSSEAU, Ronald
Issue Date: 2012
Publisher: WILEY-BLACKWELL
Citation: JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 63 (5), p. 1048-1053
Abstract: Based on earlier results about the shifted Lotka function, we prove an implicit functional relation between the Hirsch index (h-index) and the total number of sources (T). It is shown that the corresponding function, h(T), is concavely increasing. Next, we construct an implicit relation between the h-index and the impact factor IF (an average number of items per source). The corresponding function h(IF) is increasing and we show that if the parameter C in the numerator of the shifted Lotka function is high, then the relation between the h-index and the impact factor is almost linear.
Notes: Egghe, L (reprint author), Univ Hasselt UHasselt, B-3590 Diepenbeek, Belgium. Univ Antwerp, IBW, B-2000 Antwerp, Belgium. KHBO Assoc KU Leuven, Fac Engn Technol, B-8400 Oostende, Belgium. Katholieke Univ Leuven, Dept Math, B-3000 Heverlee, Belgium. leo.egghe@uhasselt.be; ronald.rousseau@khbo.be
URI: http://hdl.handle.net/1942/15310
DOI: 10.1002/asi.22617
ISI #: 000303500300013
ISSN: 1532-2882
Category: A1
Type: Journal Contribution
Validation: ecoom, 2014
Appears in Collections: Research publications

Files in This Item:

Description SizeFormat
published version200.38 kBAdobe PDF

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.