Document Server@UHasselt >
Research >
Research publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/15292

Title: Skew polynomial algebras with coefficients in Koszul Artin–Schelter regular algebras
Authors: He, Jiwei
Van Oystaeyen, Fred
Zhang, Yinhuo
Issue Date: 2013
Citation: Journal of Algebra, 390, p. 231-249
Abstract: Let A be a Koszul Artin–Schelter regular algebra with Nakayama automorphism ξ . We show that the Yoneda Ext-algebra of the skew polynomial algebra A[z; ξ ] is a trivial extension of a Frobenius algebra. Then we prove that A[z; ξ ] is Calabi–Yau; and hence each Koszul Artin–Schelter regular algebra is a subalgebra of a Koszul Calabi–Yau algebra. A superpotential ˆw is also constructed so that the Calabi–Yau algebra A[z; ξ ] is isomorphic to the derivation quotient of ˆw . The Calabi–Yau property of a skew polynomial algebra with coefficients in a PBW-deformation of a Koszul Artin–Schelter regular algebra is also discussed.
Notes: Reprint author: He, J.W., Shaoxing Coll Arts & Sci, Dept Math, Shaoxing 312000, Zhejiang, Peoples R China. E-mail Addresses:jwhe@usx.edu.cn; fred.vanoystaeyen@ua.ac.be; yinhuo.zhang@uhasselt.be
URI: http://hdl.handle.net/1942/15292
Link to publication: http://www.sciencedirect.com/science/article/pii/S0021869313003086
DOI: 10.1016/j.jalgebra.2013.05.023
ISI #: 000321798700013
ISSN: 0021-8693
Category: A1
Type: Journal Contribution
Validation: ecoom, 2014
Appears in Collections: Research publications

Files in This Item:

Description SizeFormat
N/A339.32 kBAdobe PDF

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.