Document Server@UHasselt >
Research >
Research publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/14594

Title: Potential of willow and its genetically engineered associated bacteria to remediate mixed Cd and toluene contamination
Authors: WEYENS, Nele
Ceulemans, Reinhart
Taghavi, Safiyh
Issue Date: 2013
Citation: JOURNAL OF SOILS AND SEDIMENTS, 13 (1), p. 176-188
Abstract: The purpose of this study was to investigate if bacteria with beneficial properties that were isolated from willow growing on a metal-contaminated site can be further equipped with genes coding for a specific degradation pathway to finally obtain transconjugants that can be inoculated in willow to improve phytoremediation efficiency of mixed contaminations. Cultivable rhizosphere bacteria and root endophytes were isolated from willow (cv. Tora) growing on a metal-contaminated soil. All isolated strains were tested for their metal resistance and potential to promote plant growth. The two most promising strains were selected and were equipped with the pTOM plasmid coding for toluene degradation. Both transconjugants were inoculated separately and combined in willow cuttings exposed to mixed Cd-toluene contamination, and their effect on phytotoxicity, Cd uptake, and toluene evapotranspiration was evaluated. Many of the isolated strains tested positive for the production of siderophores, organic acids, and indole acetic acid (IAA) and showed increased Cd resistance. The Cd-resistant, siderophore-producing rhizosphere strain Burkholderia sp. HU001 and the Cd-resistant root endophyte Pseudomonas sp. HU002, able to produce siderophores, organic acids, and IAA, were selected as receptors for conjugation with the toluene-degrading Burkholderia vietnamiensis BU61 as a donor of the pTOM-TCE plasmid. Although inoculation with the individual transconjugant strains had no effect on plant growth and negatively affected Cd uptake, their combined inoculation resulted in an increased shoot biomass upon Cd-toluene exposure did not affect Cd uptake and strongly reduced evapotranspiration of toluene to the atmosphere. In this study, inoculation of willow with a consortium of plant-associated bacteria equipped with the appropriate characteristics resulted in an improved phytoremediation of a mixed Cd-toluene contamination: the degradation of toluene was improved leading to a decreased toxicity and evapotranspiration, while Cd uptake and translocation were not affected.
Notes: [Weyens, Nele; Schellingen, Kerim; Beckers, Bram; Janssen, Jolien; Carleer, Robert; Vangronsveld, Jaco] Hasselt Univ, Ctr Environm Sci, B-3590 Diepenbeek, Belgium. [Ceulemans, Reinhart] Univ Antwerp, Dept Biol, B-2610 Antwerp, Belgium. [van der Lelie, Daniel; Taghavi, Safiyh] Res Triangle Inst RTI Int, Res Triangle Pk, NC 27709 USA. nele.weyens@uhasselt.be
URI: http://hdl.handle.net/1942/14594
DOI: 10.1007/s11368-012-0582-1
ISI #: 000313411500017
ISSN: 1439-0108
Category: A1
Type: Journal Contribution
Validation: ecoom, 2014
Appears in Collections: Research publications

Files in This Item:

Description SizeFormat
published version350.86 kBAdobe PDF

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.