www.uhasselt.be
DSpace

Document Server@UHasselt >
Research >
Research publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/10855

Title: CONSTRUCTING QUASITRIANGULAR MULTIPLIER HOPF ALGEBRAS BY TWISTED TENSOR COPRODUCTS
Authors: Wang, S. H.
Van Daele, A.
ZHANG, Yinhuo
Issue Date: 2009
Publisher: TAYLOR & FRANCIS INC
Citation: COMMUNICATIONS IN ALGEBRA, 37(9). p. 3171-3199
Abstract: Let A and B be multiplier Hopf algebras, and let R is an element of M(B circle times A) be an anti-copairing multiplier, i.e, the inverse of R is a skew-copairing multiplier in the sense of Delvaux [5]. Then one can construct a twisted tensor coproduct multiplier Hopf algebra A circle times(R) B. Using this, we establish the correspondence between the existence of quasitriangular structures in A circle times(R) B and the existence of such structures in the factors A and B. We illustrate our theory with a profusion of examples which cannot be obtained by using classical Hopf algebras. Also, we study the class of minimal quasitriangular multiplier Hopf algebras and show that every minimal quasitriangular Hopf algebra is a quotient of a Drinfel'd double for some algebraic quantum group.
Notes: [Wang, S. H.] Southeast Univ, Dept Math, Nanjing 210096, Jiangsu, Peoples R China. [Van Daele, A.] Katholieke Univ Leuven, Dept Math, Heverlee, Belgium. [Zhang, Y. H.] Victoria Univ Wellington, Sch Math Stat & Comp Sci, Wellington, New Zealand. [Zhang, Y. H.] LUC, Dept Math, Diepenbeek, Belgium.
URI: http://hdl.handle.net/1942/10855
DOI: 10.1080/00927870902747894
ISI #: 000270582800014
ISSN: 0092-7872
Category: A1
Type: Journal Contribution
Validation: ecoom, 2010
Appears in Collections: Research publications

Files in This Item:

There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.