www.uhasselt.be
DSpace

Document Server@UHasselt >
Research >
Research publications >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/10562

Title: Asymptotic behavior of the finite-time expected time-integrated negative part of some risk processes and optimal reserve allocation
Authors: BIARD, R.
LOISEL, S.
Macci, C.
VERAVERBEKE, Noel
Issue Date: 2010
Publisher: ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
Citation: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 367(2). p. 535-549
Abstract: In the renewal risk model, we study the asymptotic behavior of the expected time-integrated negative part of the process. This risk measure has been introduced by [1]. Both heavy-tailed and light-tailed claim amount distributions are investigated. The time horizon may be finite or infinite. We apply the results to an optimal allocation problem with two lines of business of an insurance company. The asymptotic behavior of the two optimal initial reserves are computed.
Notes: R. Biarda, S. Loisela: Université de Lyon, Université Claude Bernard Lyon 1, Institut de Science Financière et d'Assurances, 50 Avenue Tony Garnier, F-69007 Lyon, France - C. Maccib: Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma, Italy - N. Veraverbeke: Center for Statistics, Hasselt University, Agoralaan, B-3590 Diepenbeek, Belgium
URI: http://hdl.handle.net/1942/10562
DOI: 10.1016/j.jmaa.2010.01.051
ISI #: 000276524700020
ISSN: 0022-247X
Category: A1
Type: Journal Contribution
Validation: ecoom, 2011
Appears in Collections: Research publications

Files in This Item:

Description SizeFormat
Preprint240.68 kBAdobe PDF

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.