ratio (OR) for vert fx were in the expected direction. Giving an expected false positive number of 19 SNPs (15.097 × 0.5 × 0.05 × 0.05).

Results: In women we found 41 significant SNPs originating from 8 genes. In men we found 75 significant SNPs in 8 genes, of which two were found in both men and women. Estrogen Receptor alpha (ESR1) and steroid-5-alpha-reductase, alpha polypeptide 2 (SRD5A2). However, the associations are likely to originate from different loci within the genes. In men the most significant SNP is rs1779411 in the LHCGR-gene (β= −0.02, SE= 0.006, p= 5 × 10^{-4}; vert fx: OR= 1.6, 95%CI= 1.2−2.1, p= 4 × 10^{-4}). In women the most significant SNP is rs3757597 in the POR-gene (β= 0.048, SE= 0.015, p= 9 × 10^{-4}; vert fx: OR= 0.288, 95%CI= 0.11−0.75, p= 0.004).

Discussion: This study indicates gender-specific associations for genetic variations in the estrogen pathway with lumbar spine BMD and vertebral fracture risk. After menopause locally produced estrogens are important for bone, whereas pre-menopausal and in men systemic estrogens are important. There could be a difference in genes responsible for local or systemic produced estrogen, explaining the gender-specific differences in this study.

Conflict of interest: None declared.

doi:10.1016/j.bone.2009.03.158

P247
Lack of association between OPG and RANKL polymorphisms and BMD — Results from the Odense Androgen Study
M.F. Nielsen¹, C. Brasen², B. Krixen³, K. Wraae³, M. Andersen³, T. Nielsen³, B. Abrahamson⁴
¹Endocrinology, Odense University Hospital, Odense, Denmark
²Clinical Biochemistry, Odense University Hospital, Odense, Denmark
³Medical Gentofte Hospital, Copenhagen, Denmark

Introduction: The objective of this study was to investigate the effect of polymorphisms in osteoprotegerin (OPG) and nuclear factor-κB ligand (RANKL) on bone mineral density (BMD) in men.

Methods: Odense Androgen Study is a population-based, cross-sectional study on endocrine functions in men. The study population consists of random samples of 783 young (aged: 20–30 yrs) and 600 elderly (aged: 60–75 yrs) men. BMD of the whole body (WB), femoral neck (FN), total hip (THBMD) and lumbar spine (LSBMD) were measured using a Hologic 4500 densitometer.

Polymorphisms in OPG (dbSNP: rs6993813, rs6469804) and RANKL (dbSNP: rs9594738, rs9594759) were analysed using Taqman real-time PCR.

Young and elderly men were analysed separately. Linear regression analysis and one-way ANOVA were used to test for associations between measures of bone mass and genotypes allowing for additive, dominant and recessive models. Adjustment for age, BMI, use of tobacco and alcohol consumption was performed.

Results: The polymorphisms were associated with WB, FN, THBMD and LSBMD neither before nor after adjustment of potential confounders, although tendencies towards associations between FN and both OPG polymorphisms (rs6993813: r= −0.06; p= 0.10; rs6469804: r= −0.06; p= 0.09) were found in the young population.

Conclusion: Our study was not supportive of an association between polymorphisms in OPG and RANKL on BMD in males including PBM. The results may, however, be hampered by low power due to a rather small number of participants and the cross-sectional design. Furthermore, the results may only apply to males of Danish origin. Finally, the study did not incorporate information on fractures.

Conflict of interest: None declared.

doi:10.1016/j.jbioneu.2009.03.159

P248
An interaction between PPAR gamma and polyunsaturated fatty acids influences changes of bone microstructure in ageing mice
N. Bonnet¹, C. Rosen², S.S.F. Ferrari³
¹Rehabilitation and Geriatrics, Geneva University Hospital and Faculty of Medicine, Service of Bone Diseases, Geneva, Switzerland
²Maine Center for Osteoporosis Research and Education, St. Joseph Hospital, Bangor, ME, USA

Background: Western diets characterized by low ratios of omega-3/6 fatty acids (FA) have been associated with age-related chronic disorders. Mechanisms of PPAR gamma activation, increased adiposity and decreased osteoblastogenesis. In B6.C3H-6T (6T) congenic mice, which express higher levels of PPAR gamma compared to genuine C57BL/6J (B6), bone loss induced by a fat-rich diet is magnified (Ackert-Bicknell et al, JBMR 2008). We hypothesized that the level of PPAR gamma would specifically influence the effects of omega-3/-6 on bone mass and structure.

Methods: 6T and B6 female mice aged 3 months were given either a fish oil diet (omega-3/-6 ratio: 7.9) or an isocaloric safflower oil diet (omega-3/-6 ratio: 0) for 8 months (n= 10). Changes in body composition and bone mass were analysed by Piximus, and microstructure in caudal spine and tibia by in vivo microCT.

Results: After 8 months, body weight and % fat were lower with fish oil compared to safflower in both 6T (−24.9% and −35.4%, respectively, p< 0.05) and B6 (−30.0%, −27.6%, respectively, p< 0.05). Spine BMD was significantly improved in response to fish oil in B6 (71 ± 3 mg/cm² vs 54 ± 3 mg/cm² with safflower, p< 0.01), whereas femoral BMD was unaffected. In contrast, in 6T, vertebral BMD did not significantly differ between the two diets whereas femoral BMD was significantly lower in the fish oil compared to safflower group (76 ± 2 mg/cm² vs 83 ± 1 mg/cm², p< 0.05). In caudal spine of B6 mice, fish oil inhibited loss of BV/TV and trabecular number (TbN) (−6.0% and +2.2% versus −32% and −11.4% in the safflower group, respectively, all p< 0.05), whereas in 6T, fish oil did not have significant effects. In the proximal tibia, the loss of BV/TV and TbN with aging was not prevented by fish oil in B6. However, in 6T, fish oil further increased the loss of BV/TV and TbN (−93.7% and −94.4%, versus −84.8% and −87.3% in safflower group, respectively, all p< 0.05). At the femur midshaft, cortical bone volume gain was significantly reduced by fish oil in B6 (−1.7% vs + 8.0% in safflower group, p< 0.05) and 6T (−1.7% and +5.6% in safflower group, p< 0.05). These differences did not remain significant after adjustment for body weight.

Conclusion: Compared to a diet rich in omega-6s, fish oil prevents spine BMD and trabecular bone loss in ageing mice. These beneficial effects are lost, and eventually reversed, in mice expressing PPAR gamma gene at higher levels, suggesting that the effects of FA on bone microstructure may depend on interactions with PPAR gamma genotypes. Moreover, the effects of FA on trabecular microarchitecture appear to be site dependent, which could be related to differences in adiposity.

Conflict of interest: None declared.

doi:10.1016/j.jbioneu.2009.03.160

P249
Genetic variation in the TNFRSF11A (RANK) gene contributes to the risk to develop sporadic Paget's disease of bone
P.Y.J. Chung¹, G. Beyens⁵, P.L. Riches⁶, L. Van Wesenbeek⁷, J.P. Devogelaer⁸, W. Van Hul⁸
¹ occupational health service, Brussels, Belgium
²Department of Endocrinology, University Hospital, Brussels, Belgium
³Department of Geriatric Medicine, University Hospital, Brussels, Belgium
⁴Department of Radiology, University Hospital, Brussels, Belgium
⁵Department of Radiology, University Hospital, Ghent, Belgium
⁶Department of Geriatric Medicine, University Hospital, Ghent, Belgium
⁷Department of Radiology, University Hospital, Ghent, Belgium
⁸Department of Radiology, University Hospital, Brussels, Belgium

Background: The TNFRSF11A gene encodes the RANK protein, a receptor for the cytokine RANKL. RANKL binds to RANK and activates osteoclasts, which are the resorbing cells of bone. Several studies have suggested that RANKL and its receptor RANK are involved in the pathogenesis of Paget’s disease of bone (PD), a chronic disease characterized by disorganization of bone remodeling leading to osteoporosis and osteosclerosis.

Methods: A total of 730 index patients with PD were included in this study. The patients were compared with 1500 healthy control individuals. The rs6469804 polymorphism in the TNFRSF11A gene was genotyped using Taqman assay. Logistic regression analysis was performed to determine the association between rs6469804 and PD.

Results: The frequency of the minor allele (C) of rs6469804 was significantly higher in the PD group compared to the control group (35.2% vs 28.6%, p= 0.03). The odds ratio (OR) for PD associated with the minor allele was 1.37 (95% CI: 1.05−1.8). The association was stronger in females (OR= 1.6, 95% CI: 1.2−2.1) than in males (OR= 1.1, 95% CI: 0.8−1.5).

Conclusion: The rs6469804 polymorphism in the TNFRSF11A gene is associated with PD. The association is stronger in females than in males.

Conflict of interest: None declared.

doi:10.1016/j.jbioneu.2009.03.159
SNPs and 2 MMTs are significantly associated (p-values between 0.037 and 3.17×10^-5). In addition, we have included 1 non-synonymous SNP (H141Y) which is not present in HapMap. Genotyping for both SNPs: H141Y with P=0.005 (respectively); and A192V with P=8.8×10^-5 and P=0.005 (respectively). Although the association of H141Y seems to be driven only by females (the Dutch: P=0.004 and the British: P=0.047), significance of A192V is observed in males as well as in females (the Dutch: P=0.012 and P=0.002, respectively; and the British: P=0.047 and P=0.045, respectively).

In conclusion, these results provide a very strong indication that genetic variation within TNFRSF11A influences the risk to develop sporadic PDB. Functional studies are ongoing to check whether any of the non-synonymous SNPs is the real causative SNP.

In this study we analyzed associations of Alu I polymorphism in the VDR gene on spine BMD (P=0.033) and spine BMD (P<0.001). No polymorphism alone affected any of the analyzed traits significantly; however, effects of VDR gene on spine BMD (P=0.070) and ALP (P=0.086) were not far from the significance level. We did not find significant associations between the genes and OC, CTx. Comparison of fracture incidence between the genotype groups showed significant differences (P<0.05) for the CALCR gene regardless of calcium intake level. The effect of the VDR gene was significant only in C diet group (P<0.01). The ff-genotype carriers had higher frequency of fracture than the others.

The analysis of associations between candidate genes (interactions), diet, and BMD or bone turnover markers can extend our knowledge about molecular background of bone remodeling and loss. The results could be also applicable in osteoporosis susceptibility prediction.

All procedures were approved by the Ethical Committee of the Specialized Hospital of St. Svorad in Nitra (Slovakia). This study was supported by the grant KEGA 2009-2011 (Omelka).

Conflict of interest: None declared.

doi:10.1016/j.bone.2009.03.161