Shared-parameter models and missingness at random

Article in Statistical Modelling · August 2011
DOI: 10.1177/1471082X1001100401

CITATIONS 8
READS 241

6 authors, including:

Niel Hens
Hasselt University
335 PUBLICATIONS 3,502 CITATIONS
SEE PROFILE

Marc Aerts
Hasselt University
311 PUBLICATIONS 3,494 CITATIONS
SEE PROFILE

Geert Molenberghs
Universiteit Hasselt and University of Leuven
923 PUBLICATIONS 21,045 CITATIONS
SEE PROFILE

Geert Verbeke
University of Leuven
351 PUBLICATIONS 13,685 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Student thesis project View project

Estimating age-time dependent malaria force of infection accounting for unobserved heterogeneity View project

All content following this page was uploaded by Geert Molenberghs on 25 December 2014.

The user has requested enhancement of the downloaded file.
Generalized shared-parameter models and missingness at random

An Creemers¹, Niels Hens¹,², Marc Aerts¹ Geert Molenberghs¹,³, Geert Verbeke¹,³ and Michael G Kenward⁴

¹I-BioStat, Universiteit Hasselt, Belgium
²Centre for Health Economics Research and Modeling Infectious Diseases (CHERMID), Centre for the Evaluation of Vaccination (WHO Collaborating Centre), Vaccine & Infectious Disease Institute, University of Antwerp, Belgium
³I-BioStat, Katholieke Universiteit Leuven, Belgium
⁴Medical Statistics Unit, London School of Hygiene and Tropical Medicine, UK

Abstract: When data are incomplete, models are often catalogued according to one of the three modelling frameworks to which they belong: selection models (SeM), pattern-mixture models (PMM) and shared-parameter models (SPM). The missing data mechanism is conventionally classified as missing completely at random (MCAR), missing at random (MAR) and missing not at random (MNAR). Under MCAR, measurement and missingness mechanism are independent, but that is not the case for MAR. The definition of MAR is in SeM terms. Molenberghs et al. (1998) provided a characterization for PMM. Here, MAR is characterized in the SPM framework, using an extended SPM class. A subfamily, satisfying the MAR condition, is studied in detail. Particular implications for non-monotone missingness as well as for longitudinal data subject to dropout are studied. It is indicated how SPM can be constrained such that dropout at a given point in time can depend on current and past, but not on future measurements. Although, a natural requirement, it is less easily imposed in the PMM and SPM frameworks than in the SeM case. Some of the models proposed are illustrated using a clinical trial in toenail dermatophyte onychomycosis.

Key words: available-case missing value restrictions; ignorability; missing at random counterpart; missing completely at random; missing non-future-dependent restrictions; non-future dependence; pattern-mixture model; selection model

Received April 2009; revised October 2009; accepted October 2009

1 Introduction

Incomplete sets of data are common throughout all branches of empirical research. Incomplete data have always posed problems of imbalance in the data matrix, but more importantly incompleteness often destroys a trial’s randomization justification.
or a survey’s representativeness. The extent to which this happens depends on the nature of the missing data mechanism. Rubin (1976) provided a formal framework for the field of incomplete data by introducing the important taxonomy of missing data mechanisms, consisting of missing completely at random (MCAR) missing at random (MAR) and missing not at random (MNAR). An MCAR mechanism potentially depends on observed covariates, but neither on observed nor on unobserved outcomes. An MAR mechanism depends on the observed outcomes and perhaps also on the covariates, but not further on unobserved measurements. Finally, when an MNAR mechanism is operating, missingness does depend on unobserved measurements, maybe in addition to dependencies on covariates and/or on observed outcomes.

During the same era, the selection model (SeM), pattern-mixture model (PMM) and shared-parameter model (SPM) frameworks have been established. In an SeM, the joint distribution of the ith subject’s outcomes, denoted by Y_i, and vector of missingness indicators, written as R_i, is factored as the marginal outcome distribution and the conditional distribution of R_i given Y_i. A pattern-mixture approach starts from the reverse factorization. In an SPM, a set of latent variables, latent classes and/or random effects is assumed to drive both the Y_i and R_i processes. An important version of such a model further asserts that, conditional on the latent variables, Y_i and R_i exhibit no further dependence. Rubin (1976) contributed the concept of ignorability, stating that under precise conditions, the missing data mechanism can be ignored when interest lies in inferences about the measurement process. Combined with regularity conditions, ignorability applies to MCAR and MAR combined, when likelihood or Bayesian inference routes are chosen, but the stricter MCAR condition is required for frequentist inferences to be generally valid. These conditions are sufficient, not necessary. All these concepts will be formalized in Section 2 and amplified with the need arising in subsequent sections.

The concept of MAR has typically been framed within the SeM framework, while Molenberghs et al. (1998) provided a formulation in the PMM setting as well. For the particular case of longitudinal data with dropout, these authors derived a set of so-called identifying restrictions, to identify the model for the missing measurements given the observed ones within a missing-data pattern, consistent with MAR. Molenberghs et al. (2007) showed that for every MNAR model, there is an MAR counterpart that produces exactly the same fit to the observed data. Hence, the original model and its MAR counterpart cannot be distinguished from one another. This can be viewed as a formalization of the ideas put forward in Jansen et al. (2006). These authors focused on the SeM and PMM frameworks.

In this paper, we will characterize MAR in the SPM framework as well and a connection will be made with the MAR counterpart in the sense of Molenberghs et al. (2007). To this end, a broad class of SPM will be defined. Implications for both non-monotone missing data as well as longitudinal data with dropout will be considered. In particular, in analogy with the PMM work by Kenward et al. (2003), conditions will be derived to ensure future; unobserved measurements provide no
information about dropout in addition to what is available from current and past measurements.

Our results are conceptual in nature, in the sense that we take no position as to whether either it is natural, for a particular application, to assume that missingness is MAR, or it does not depend on future observations. Rather, we ensure that the modeller is able to consider such mechanisms within the SPM framework, in analogy with the SEM and PMM frameworks. That said, in many situations, one would want to avoid missingness to further depend on future observations, given past ones.

The remainder of the paper is organized as follows. Notation and formal concepts, used throughout the paper, are detailed in Section 2. The background results regarding MAR counterparts to MNAR models, necessary in what follows, are reviewed in Section 3. Section 4 defines a general class of SPM, within which MAR is then characterized. A particularly appealing set of MAR-type SPM, satisfying the characterization, is presented. It is also shown that there exist models of the SPM type that do not belong to this particular family. Implications for non-monotone missingness and longitudinal data with dropout, where time ordering is important, are the subject of Sections 5 and 6, respectively. A set of clinical trial data, is introduced and analysed in Section 7.

2 Notation and concepts

Let the random variable Y_{ij} denote the response of interest, for the ith study subject, designed to be measured at occasions $t_{ij}, i = 1, \ldots, N, j = 1, \ldots, n_i$. Independence across subjects is assumed. This setting covers both the longitudinal as well as the multivariate settings. In the latter case, $t_{ij} = t_j$ would merely be indicators for the various variables studied, and typically $n_i \equiv n$. The outcomes can conveniently be grouped into a vector $Y_i = (Y_{i1}, \ldots, Y_{in_i})'$. In addition, define a vector of missingness indicators $R_i = (R_{i1}, \ldots, R_{in_i})'$ with $R_{ij} = 0$ if Y_{ij} is observed and 1 otherwise. In the specific case of dropout, R_i can usefully be replaced by the dropout indicator

$$D_i = \sum_{j=1}^{n_i} (1 - R_{ij}).$$

Note that the concept of dropout refers to time-ordered variables, such as in longitudinal studies. For a complete sequence, $R_i = 0$ and/or $D_i = n_i$. It is customary to split the vector Y_i into observed (Y_{i0}) and missing (Y_{im}) components, respectively. When R_i is conditioned up, Y_{i0} and Y_{im} explicitly refer to the observed and missing components. In the reverse case, they refer to an arbitrary partition of the outcome vector.

In principle, one would like to consider the density of the full data $f(y_i, r_i | \theta, \psi)$, where the parameter vectors θ and ψ describe the measurement and missingness processes, respectively. Covariates are assumed to be measured and grouped in a
vector \mathbf{x}_i, but, throughout, are suppressed from notation. Although unusual, it is in principle possible for θ and ψ to have components in common.

This full density function can be factored in different ways, each leading to a different framework. They were mentioned briefly in Section 1. Here, we will present them more formally but in their standard form of appearance. In subsequent sections, they will be tailored to our needs, in particular the SPM.

The SeM framework is based on the following factorization (Rubin, 1976; Little and Rubin, 2002):

$$ f(y_i, r_i | \theta, \psi) = f(y_i | \theta) f(r_i | y_i, \psi). \quad (2.1) $$

The first factor is the marginal density of the measurement process and the second one is the density of the missingness process, conditional on the outcomes. As an alternative, one can consider so-called PMM (Little, 1993, 1994) using the reversed factorization

$$ f(y_i, r_i | \theta, \psi) = f(y_i | r_i, \theta) f(r_i | \psi). \quad (2.2) $$

This can be seen as a mixture density over different populations, each of which is defined by the observed pattern of missingness.

Instead of using the selection modelling or pattern-mixture modelling frameworks, the measurement and the dropout process can be jointly modelled using an SPM (Wu and Bailey, 1988, 1989; Wu and Carroll, 1988; Follmann and Wu, 1995; Little, 1995; TenHave et al., 1998). One then might assume that there exists a vector of random effects b_i, conditional upon which the measurement and dropout processes are independent. This SPM is formulated by way of the following factorization:

$$ f(y_i, r_i | b_i, \theta, \psi) = f(y_i | b_i, \theta) f(r_i | b_i, \psi), \quad (2.3) $$

and hence

$$ f(y_i, r_i | \theta, \psi) = \int f(y_i | b_i, \theta) f(r_i | b_i, \psi) f(b_i) \, db_i. \quad (2.4) $$

Here, b_i are shared parameters, often considered to be random effects and following a specific parametric distribution. There are various other forms an SPM can take, and a more thorough discussion can be found in Section 4.

3 Every MNAR model has an MAR counterpart

In this section, based on the argument of Molenberghs et al. (2007), we restate that for every MNAR model fitted to a set of data, there is a unique MAR counterpart providing exactly the same fit to the data. We will sketch these results in view of their transposition in what follows to the general SPM case. Here, the concept of model fit should be understood as measured using such conventional methods as deviance measures and, of course, in as far as the observed data are concerned. The following steps are involved: (i) fitting an MNAR model to the data; (ii) reformulating the fitted model in PMM form; (iii) replacing the density or distribution of the unobserved...
Generalized shared-parameter models and missingness at random

measurements given the observed ones and given a particular response pattern by its MAR counterpart and (iv) establishing that such an MAR counterpart uniquely exists.

In the first step, fit an MNAR model to the observed data, with likelihood

\[L = \prod_i \int f(y_i^o, y_i^m, r_i | \theta, \psi) dy_i^m. \]

(3.1)

Using hats for estimated parameters, express the full density in PMM form

\[f(y_i^o, y_i^m | r_i, \hat{\theta}, \hat{\psi}) f(r_i | \hat{\theta}, \hat{\psi}) = f(y_i^o | r_i, \hat{\theta}, \hat{\psi}) f(r_i | \hat{\theta}, \hat{\psi}) f(y_i^m | y_i^o, r_i, \hat{\theta}, \hat{\psi}). \]

(3.2)

A similar reformulation can be considered for an SPM, as will be shown in the next section. Molenberghs et al. (2007) formally show that the fit does not change after such a substitution, which led them to state that every fit to the observed data, obtained from fitting an MNAR model to a set of incomplete data, is exactly reproducible from an MAR decomposition. The key computational consequence is the need to determine \(h(y_i^m | y_i^o) \). This means that, for each pattern, the conditional density of the unobserved measurements given the observed ones needs to be extracted from the marginal distribution of the complete set of measurements. Molenberghs et al. (1998) have shown that, for the case of dropout, the so-called available-case missing value restrictions (ACMV) provide a practical computational scheme. Molenberghs et al. (2007) discuss computational schemes and provide a number of illustrations, with particular emphasis on contingency tables subject to both monotone and non-monotone missingness.

When applying these ideas, computational issues will arise. There are various options available. For example, in a pattern-mixture context, some authors have made use of multiple imputation. The same could be envisaged for SPM. Admittedly, there are alternatives, however, and the choice among this will often be a pragmatic one.

4 SPM and missingness at random

SPMs are closely linked to the joint modelling of longitudinal and time-to-event data, a class of models considered for at least three reasons. First, a time-to-event outcome may be measured in terms of a longitudinal covariate. Such a joint model then allows, in a natural way, for incorporation of measurement error present in the longitudinal covariate into the model. Second, a number of researchers have used joint modelling methods to exploit longitudinal markers as surrogates for survival (Tsiatis et al., 1995; Henderson et al., 2000; Xu and Zeger, 2001a; Renard et al., 2002).

Third, and of most relevance here, such joint models can be used when incomplete longitudinal data are collected. Important early references to such models are Wu and Carroll (1988), Wu and Bailey (1988), and Wu and Bailey (1989). Wu and Bailey (1988) proposed such a model for what they termed informative right censoring. For a continuous response, Wu and Carroll (1988) suggested using a conventional
Gaussian random-coefficient model combined with an appropriate model for time to dropout, such as proportional hazards, logistic or probit regression. The combination of probit and Gaussian responses allows explicit solution of the integral and was used in their application.

In a slightly different approach to modeling dropout time as a continuous variable in the latent variable setting, Schluchter (1992) and DeGruttola and Tu (1994) proposed joint multivariate Gaussian distributions for the latent variables of the response process and a variable representing time to dropout. The correlation between these variables induces dependence between dropout and response. Rizopoulos et al. (2008) study the impact of random-effects misspecification in an SPM. Beunckens et al. (2007a) combine continuous random effects with latent classes, leading to the simultaneous use of mixture and mixed-effects models ideas. It is very natural to handle random-coefficient models, and in particular SPM, in a Bayesian framework. Examples in the missing value setting are provided by Best et al. (1996) and Carpenter et al. (2002). Further references include Pawitan and Self (1993); Taylor et al. (1994); Faucett and Thomas (1996); Lavalley and DeGruttola (1996); Hogan and Laird (1997, 1998); Wulfsohn and Tsiatis (1997) and Xu and Zeger (2001b).

Models of this type handle non-monotone missingness quite conveniently through random effects. There are many ways in which such models can be extended and generalized. Nevertheless, these models seem to defy an easy, elegant characterization of MAR, which is the topic of what follows.

In Section 2, the commonly used definition (2.3) of an SPM is presented. However, the preceding review makes clear that not all authors employ the same definition. Before passing on to the definition we will employ here, it is therefore instructive to take a more general position, also considered by Little (1995), based on augmenting the joint density of \((y, r, b)\) with a vector of random effects \(b\):

\[
f(y, r, b | \theta, \psi, \xi), \quad (4.1)
\]

where \(\xi\) is now explicitly included to parametrize the random-effects distribution. As before, covariates are allowed to be present, perhaps taking the form of different sets that each describe one of the three components. Again, they are suppressed from notation. Based on \((4.1)\), one can still consider the SeM factorization

\[
f(y, r, b | \theta, \psi, \xi) = f(y | r, b, \theta) f(r | y, b, \psi) f(b | \xi) \quad (4.2)
\]

and, likewise, the PMM factorization

\[
f(y, r, b | \theta, \psi, \xi) = f(y | r, b, \theta) f(r | y, b, \psi) f(b | \xi). \quad (4.3)
\]

The notation is the same as in Section 2, with in addition \(\xi\) parameters describing the random-effects distribution. Little (1995) refers to such decompositions as random-coefficient selection and pattern-mixture models, respectively. Little (2009) and Yuan and Little (2008) present hybrid models with meaningful, identifiable parameters. Obviously, SeM (2.1) and PMM (2.2) follow by removing the random effects from \((4.2)\) and \((4.3)\), respectively, or, at least, not having them in common between the models for \(Y_i\) and \(R_i\).
An important simplification, leading to the already-defined SPM (2.3), arises when Y_i and R_i are assumed to be independent, given the random effects, i.e., when conditional independence assumptions are made. Spelling out the model in full produces

$$f(y_i, r_i, b_i | \theta, \psi, \xi) = f(y_i | b_i, \theta) f(r_i | b_i, \psi) f(b_i | \xi).$$

(4.4)

Model (4.4) corresponds to (2.3), but now also the distribution of the random effects has been spelled out explicitly. This model was entertained by Follmann and Wu (1995). Note that, when b_i is assumed to be discrete, a latent-class or mixture model follows.

We are now in a position to introduce the SPM framework needed for our purposes. Note that most formulations assume that a single, common set b_i drives the entire process. While holding on to the conditional independence assumption, we will expand b_i to a set of latent structures, as in the following definition.

Definition 1 (A Generalized SPM Family). A general SPM is defined as one of the form

$$f(y^o_i | g_i, h_i, j_i, k_i, \ell_i, m_i, q_i) f(y^n_i | y^o_i, g_i, h_i, k_i, \ell_i, m_i, q_i) f(r_i | g_i, j_i, k_i, \ell_i, m_i, q_i),$$

(4.5)

where g_i, h_i, j_i, k_i, ℓ_i, m_i, and q_i are independent random-effects vectors (vectors of latent variables).

In (4.5), parameters have been suppressed from notation. The same shorthand will be used in what follows, too. For convenience, write

$$b_i = (g_i, h_i, j_i, k_i, \ell_i, m_i, q_i).$$

(4.6)

Several remarks are in place. First, this is the most general random-effects model that can be considered in the sense that g_i is common to all three factors in (4.5), h_i, j_i, and k_i are shared between a pair of factors and ℓ_i, m_i, and q_i are restricted to a single factor. Depending on the application, one may choose to either retain all random effects or omit some. It will then be useful to have a perspective on the implications of such simplifications, preferably also in terms of the missing data mechanism operating. This is why we will establish conditions under which MAR operates on the one hand, and missingness does not depend on future, unobserved measurements in a longitudinal context on the other hand. Second, in full generality, model (4.5) may come across as somewhat contrived. Our objective is not to postulate (4.5) as a model of use in every possible application of SPM, but rather as the most general SPM from which substantively appropriate models follow as sub-classes. Related to this, it appears that (4.5) assumes two different distributions for the outcome vector, i.e., divorcing the observed from the missing components. This is not entirely the case because g_i and h_i still tie both factors together. The impact of j_i, k_i, ℓ_i, and m_i is to modify one’s latent process in terms of missingness. In other words, the most general model assumes that observed and missing components are governed in part
by common processes and partly by separate processes. Third, in principle, we could expand (4.5) with the densities of the random effects. This is generally not necessary for our purposes, though. Fourth, the assumption of independent random-effects vectors is not restrictive, because association is captured through the sets common to at least two factors. Fifth, conventional SPM formulation (4.4) follows by removing all random effects but \(g_i \).

Definition (4.5) will allow us to derive a general characterization of MAR in the SPM framework. It is instructive to set out by deriving an elegant set of sufficient conditions. Thereafter, necessity will be addressed. To this end, we can start from either the SeM-based definition or the PMM characterization of MAR.

Starting from the SeM definition, and assuming that \(g_i, b_i \) and \(k_i \) are zero, we can show that MAR follows:

\[
\begin{align*}
 f(r_i | y_i^o, y_i^m) &= \frac{f(r_i, y_i^o, y_i^m)}{f(y_i^o, y_i^m)} \\
 &= \int \frac{f(y_i^o | j_i, \ell_i)}{f(y_i^o | j_i, \ell_i)} \cdot \frac{f(y_i^m | y_i^o, m_i)}{f(r_i | j_i, q_i) f(b_i)} \, db_i \\
 &= \int \frac{f(y_i^o | j_i, \ell_i)}{f(y_i^o | j_i, \ell_i)} \cdot \frac{f(r_i | j_i, q_i)}{f(y_i^m | y_i^o, m_i)} \, db_i \\
 &= \frac{f(y_i^o, r_i)}{f(y_i^o)} = f(r_i | y_i^o),
\end{align*}
\]

where integration over \(b_i \) is shorthand for integration over all component vectors making up \(b_i \), listed in (4.6), or an appropriate subset thereof. Hence, a sufficient condition for the SPM to be MAR is that the random effects driving the observed measurements and/or the missing-data process do not influence the missing measurements, given the observed ones. In other words, all information about the missing measurements, apart from covariates, stems from the observed measurements only.

Clearly, the random effects \(m_i \) are not identifiable; they are included for completeness only.

It is instructive to study the same set of sufficient conditions from the PMM perspective, since it will lead us, at the end of the section, to the construction of an MAR counterpart:

\[
\begin{align*}
 f(y_i^m | y_i^o, r_i) &= \frac{f(y_i^o, y_i^m, r_i)}{f(y_i^o, r_i)} \\
 &= \int \frac{f(y_i^o | j_i, \ell_i)}{f(y_i^o | j_i, \ell_i)} \cdot \frac{f(y_i^m | y_i^o, m_i)}{f(r_i | j_i, q_i) f(b_i)} \, db_i \\
 &= \int \int \frac{f(y_i^o | j_i, \ell_i)}{f(y_i^o | j_i, \ell_i)} \cdot \frac{f(y_i^m | y_i^o, m_i)}{f(r_i | j_i, q_i) f(b_i)} \, db_i \, d\mu_i
\end{align*}
\]
Generalized shared-parameter models and missingness at random

\[
= f(y_i^m | y_i^p) : \frac{\int \int \int f(y_i^p | j_i, \ell_i) f(r_i | j_i, q_i) f(b_i) \, db_i}{\int \int \int f(y_i^p | j_i, \ell_i) f(r_i | j_i, q_i) f(b_i) \, db_i}
\]

\[
= f(y_i^m | y_i^p),
\]

not surprisingly leading to the same result.

These considerations at the same time define an important sub-class, establishing the ensuing result:

Definition 2 (A Sub-class of SPM). Define a sub-class of SPM (4.5):

\[
f(y_i^p | j_i, \ell_i) f(y_i^m | y_i^p, m_i) f(r_i | j_i, q_i).
\]

where \(j_i, \ell_i, m_i, \) and \(q_i \) are independent random-effects vectors.

In other words, Definition 2 follows as a special case from Definition 1 by omitting the random effects \(g_i, b_i \) and \(k_i \). The key rationale for this definition is, of course, the following result

Theorem 1 (A Class of MAR-based SPM). The SPM (4.7) is MAR.

We have not addressed necessity thus far. To this effect, we need to derive general expressions for MAR in the PMM case, respectively. First, for the left-hand side:

\[
f(y_i^m | y_i^p, r_i)
\]

\[
= \frac{\int \int f(y_i^p | g_i, b_i, j_i, \ell_i) f(y_i^m | y_i^p, g_i, b_i, k_i, m_i) f(r_i | g_i, j_i, k_i, q_i) f(b_i) \, db_i \, d\gamma_i^m}{\int \int f(y_i^p | g_i, b_i, j_i, \ell_i) f(y_i^m | y_i^p, g_i, b_i, k_i, m_i) f(r_i | g_i, j_i, k_i, q_i) f(b_i) \, db_i \, d\gamma_i^m}.
\]

Second, for the right-hand side, consider:

\[
f(y_i^m | y_i^p)
\]

\[
= \frac{\int \int \int f(y_i^p | g_i, b_i, j_i, \ell_i) f(y_i^m | y_i^p, g_i, b_i, k_i, m_i) f(r_i | g_i, j_i, k_i, q_i) f(b_i) \, db_i \, d\gamma_i^m \, dr_i}{\int \int \int f(y_i^p | g_i, b_i, j_i, \ell_i) f(y_i^m | y_i^p, g_i, b_i, k_i, m_i) f(r_i | g_i, j_i, k_i, q_i) f(b_i) \, db_i \, d\gamma_i^m \, dr_i}
\]

\[
= \frac{\int f(y_i^p | g_i, b_i, j_i, \ell_i) f(y_i^m | y_i^p, g_i, b_i, k_i, m_i) f(b_i) \, db_i}{\int f(y_i^p | g_i, b_i, j_i, \ell_i) f(b_i) \, db_i}.
\]
Equating (4.8) and (4.9) and, for brevity, integrating over random effects that occur in one component only, produces the general conditions, laid out in the next theorem.

Theorem 2 (Characterization of MAR in the Generalized Shared-parameter Family). A member of the general SPM family (4.5) is MAR if and only if

\[
\int f(y_o^i | g_i, j_i) f(y_m^i | y_o^i, g_i, j_i, k_i) f(b_i) \, db_i \\
\quad \int f(y_o^i | g_i, j_i) f(r_i | g_i, j_i) f(b_i) \, db_i \\
= \int f(y_o^i | g_i, j_i) f(y_m^i | y_o^i, g_i, j_i, k_i) f(b_i) \, db_i \\
\quad f(y_o^i). \tag{4.10}
\]

Evidently, again assuming that \(g_i, b_i\) and \(k_i\) cancel, reduces (4.10) to a tautological statement, showing that (4.7) satisfies Theorem 2.

There are situations where (4.10) is satisfied, without the triplet \((g_i, b_i, k_i)\) vanishing, but these will necessarily be more ad hoc and less intuitively appealing than those laid out in Theorem 1. The existence of such singular solutions is not straightforward to establish, as is clear from the following pair of examples.

Example 1 (MAR Example in Line with Definition 1). For the purpose of the examples, drop the index \(i\) from notation. Consider a bivariate outcome \((Y_1, Y_2)\), where the first one is always observed and the second component is sometimes missing. This necessitates a scalar missing-data variable \(R\) only, leading to full-data vector \((Y_1, Y_2, R)\). Let \(R = 0\) if the second component is missing and 1 otherwise. For \(R = 1\), condition (4.10) is always fulfilled, since the key component, describing the distribution of the missing observations given the observed ones, is then empty. Therefore, we can concentrate on \(R = 0\).

For simplicity, assume that all random effects, describing one factor only, are absent, i.e., remove \(\ell_i, m_i\) and \(q_i\). From the four remaining random effects, retain only \(j_i\) and \(k_i\), implying that the missing-data process is connected to both response-related factors which, in turn, are unrelated to each other. Assume furthermore that both outcomes, \(Y_1\) and \(Y_2\), are dichotomous, and that also both random effects are binary. This means that (4.10) can be simplified to

\[
\left(\sum_{i} \pi_{y_1 | j_i \pi_{j}} \right) \cdot \left(\sum_{i,k} \pi_{y_1 | j_i \pi_{y_2 | y_1 k \pi_{r=0}} | j_i \pi_{j} \pi_{k}} \right) \\
= \left(\sum_{i,k} \pi_{y_1 | j_i \pi_{r=0}} \right) \cdot \left(\sum_{i,k} \pi_{y_1 | j_i \pi_{y_2 | y_1 k \pi_{j} \pi_{k}}} \right), \tag{4.11}
\]

Statistical Modelling 2011; 11(4): 279–310
where the πs are probabilities pertaining to the variables indicated by their corresponding indices. It is convenient to introduce some simplifying notation, making use of the fact that all key variables are dichotomous: set $\gamma = \pi_{j=0}$, $\varphi = \pi_{k=0}$ and $\rho_{jk} = \pi_{r=0|jk}$.

Expression (4.11) needs to be considered only for $(Y_1, Y_2) = (0, 0)$ and $(1, 0)$, since spelling out the ones for $(1, 0)$ and $(1, 1)$ and summing them with their counterparts lead to tautological statements. This implies that (4.11) produces two equations, i.e., there are two constraints to be satisfied. For the first equation, in $(Y_1, Y_2) = (0, 0)$, choose $x = \pi_{2|01}$ as the parameter to be determined. This means that (4.11) is a linear equation in x. Clearly, setting $\pi_{2|00} = \pi_{2|01}$ solves the equation, based on two observations. First, a constant factor $\pi_{2|y_1}$ is common to both sides of the equation and hence cancels. Second, the remaining factors are pairwise equal: the first factor on the left-hand side then equals the second factor on the right-hand side; the second factor on the left-hand side equals the first factor on the right-hand side. The argument for $(Y_1, Y_2) = (1, 0)$ is entirely symmetric, and hence the unique solution implies that k vanishes from the distribution of Y_2 given Y_1, in agreement with Definition 2.

Similar manipulations can be done for the cases: (i) where only g_i is present and (ii) where only h_i and j_i are present. In these two cases, as well as in Example 1, a single random effect describes $\pi_{2|y_1}$. This is crucial to ensure in accordance with Definition 1. The next example is different in that two independent random effects will influence the probability of the second component given the first one.

Example 2 (MAR Example Violating Definition 1). Retain the setting of Example 1, but now with the pair of random effects h_i and k_i present. This particular choice leads to a different simplification of (4.10):

\[
\left(\sum_{b,k} \pi_{y_1|h} \pi_{y_2|h} \right) \cdot \left(\sum_{b,k} \pi_{y_1|h} \pi_{y_2|h} \pi_{r=0|k} \pi_{h|\pi_k} \right) = \left(\sum_{b,k} \pi_{y_1|h} \pi_{r=0|k} \pi_{h|\pi_k} \right) \cdot \left(\sum_{b,k} \pi_{y_1|h} \pi_{y_2|h} \pi_{r=0|k} \pi_{h|\pi_k} \right). \tag{4.12}
\]

We will conveniently use the following notation: $\eta = \pi_{h=0}$, $\varphi = \pi_{k=0}$ and $\rho_{k} = \pi_{r=0|k}$.

With similar logic as in Example 1, it easily follows that we only need to consider (4.12) for $(Y_1, Y_2) = (0, 0)$ and $(1, 0)$. Concentrating on the first of these, and singling out $\pi_{2|011}$ as the parameter to identify from the others, it follows that

\[
\pi_{2|011} = \frac{ab - de}{df - ac}. \tag{4.13}
\]
Table 1 Bivariate binary outcome with the first component fully observed and the second component partially missing. The missing data mechanism is MAR. The model belongs to general SPM family (4.5), but not to the specific MAR sub-class (4.7)

<table>
<thead>
<tr>
<th>Effect</th>
<th>Failure (0)</th>
<th>Success (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random h effect</td>
<td>$\eta = \pi_{h=0}$ 0.3000</td>
<td>$1 - \eta = \pi_{h=1}$ 0.7000</td>
</tr>
<tr>
<td>Random k effect</td>
<td>$\psi = \pi_{k=0}$ 0.4000</td>
<td>$1 - \psi = \pi_{k=1}$ 0.6000</td>
</tr>
<tr>
<td>R, given $k = 0$</td>
<td>$\rho_0 = \pi_{0</td>
<td>0}$ 0.4500</td>
</tr>
<tr>
<td>R, given $k = 1$</td>
<td>$\rho_1 = \pi_{0</td>
<td>1}$ 0.8000</td>
</tr>
<tr>
<td>Y_1, given $h = 0$</td>
<td>$\pi_{0</td>
<td>0}^1 0.3000$</td>
</tr>
<tr>
<td>Y_1, given $h = 1$</td>
<td>$\pi_{0</td>
<td>1}^1 0.2000$</td>
</tr>
<tr>
<td>Y_2, given $Y_1 = 0$, $h = 0$ and $k = 0$</td>
<td>$\pi_{0</td>
<td>00}^2 0.1500$</td>
</tr>
<tr>
<td>Y_2, given $Y_1 = 0$, $h = 0$ and $k = 1$</td>
<td>$\pi_{0</td>
<td>01}^2 0.2500$</td>
</tr>
<tr>
<td>Y_2, given $Y_1 = 0$, $h = 1$ and $k = 0$</td>
<td>$\pi_{0</td>
<td>10}^2 0.3500$</td>
</tr>
<tr>
<td>Y_2, given $Y_1 = 0$, $h = 1$ and $k = 1$</td>
<td>$\pi_{0</td>
<td>11}^2 0.2857$</td>
</tr>
<tr>
<td>Y_2, given $Y_1 = 1$, $h = 0$ and $k = 0$</td>
<td>$\pi_{0</td>
<td>00}^2 0.2000$</td>
</tr>
<tr>
<td>Y_2, given $Y_1 = 1$, $h = 0$ and $k = 1$</td>
<td>$\pi_{0</td>
<td>01}^2 0.3000$</td>
</tr>
<tr>
<td>Y_2, given $Y_1 = 1$, $h = 1$ and $k = 0$</td>
<td>$\pi_{0</td>
<td>10}^2 0.4000$</td>
</tr>
<tr>
<td>Y_2, given $Y_1 = 1$, $h = 1$ and $k = 1$</td>
<td>$\pi_{0</td>
<td>11}^2 0.3625$</td>
</tr>
</tbody>
</table>

with

\[
a = \pi_{0|0}^1 \eta + \pi_{0|1}^1 (1 - \eta),
\]

\[
b = \pi_{0|0}^1 \rho_{0|0}^0 \eta \varphi + \pi_{0|0}^1 \rho_{0|0}^0 \rho_{0|0}^1 \rho_1 \eta (1 - \varphi) + \pi_{0|1}^1 \rho_{0|1}^0 \rho_0 (1 - \eta) \varphi,
\]

\[
c = \pi_{0|1}^1 \rho_1 (1 - \eta) (1 - \varphi),
\]

\[
d = \pi_{0|0}^1 \rho_0 \rho_0 \rho_0 \eta \varphi + \pi_{0|1}^1 \rho_0 \rho_1 \rho_1 \eta (1 - \varphi) + \pi_{0|1}^1 \rho_1 \rho_1 (1 - \eta) \varphi + \pi_{0|1}^1 \rho_1 (1 - \eta) (1 - \varphi),
\]

\[
e = \pi_{0|0}^1 \rho_0 \rho_0 \rho_0 \eta \varphi + \pi_{0|1}^1 \rho_0 \rho_0 \rho_1 \eta (1 - \varphi) + \pi_{0|1}^1 \rho_1 \rho_0 \rho_1 (1 - \eta) \varphi
\]

and

\[
f = \pi_{0|1}^1 (1 - \eta) (1 - \varphi).
\]

The derivation for $(Y_1, Y_2) = (1, 0)$ is entirely similar and leads to (4.13) with the first conditioning argument ‘1’ rather than ‘0’. A numerical example is provided in Table 1, establishing that the random effects h_i and k_i do influence the distribution of Y_2, given Y_1, in the dropout pattern.

Finally, the characterization of Theorem 2 allows us to construct an MAR counterpart to an arbitrary SPM of the form (4.5). It is necessary to (i) retain the fit of the model to the observed data, while (ii) ensuring that (4.10) holds. This is easily done by a posteriori integrating the shared random effects out of the densities

Statistical Modelling 2011; 11(4): 279–310
Generalized shared-parameter models and missingness at random

describing the unobserved measurements, given the observed ones. Here, integration takes place over the densities of g_i, h_i, and k_i, where fitted parameters are plugged into the densities.

Theorem 3 (An MAR Counterpart to a Generalized SPM). The MAR counterpart, to an arbitrary general SPM of the type (4.5) is found by replacing $f(y^m_i|y^o_i, g_i, h_i, k_i, m_i)$ with

$$h(y^m_i|y^o_i, m_i) = \int g_i \int h_i \int k_i f(y^m_i|y^o_i, g_i, h_i, k_i, m_i) dg_i dh_i dk_i \quad (4.14)$$

First, it is clear that this marginalization is merely describing the model-based prediction of the unobserved outcomes, given the observed ones. Hence, the choice for $h(\cdot)$ does not alter the fit. Second, observe that using $h(\cdot)$ in (4.10), instead of $f(y^m_i|y^o_i, g_i, h_i, k_i, m_i)$, of Theorem 2, reduces the equation to a trivial identity, and hence the second condition is also satisfied.

For categorical random effects, such as in Examples 1 and 2, the integral in (4.14) becomes summation.

5 Non-monotone missing data

The characterization of MAR in the SPM family, the formulation of specific family (4.7) and the construction of an MAR counterpart to a general SPM are all independent of the missing-data patterns that occur in a given study. Specifically, these results apply to monotone and non-monotone patterns alike. The same is true for earlier work on the definition of MAR in the PMM framework (Molenberghs et al., 1998), and the MAR counterpart to a general model in the SeM and PMM families (Molenberghs et al., 2007), both reviewed in Section 3.

Nevertheless, it is useful to realize that the purely probabilistic concept behind MAR, as intended by Rubin (1976), is not necessarily the same as the pragmatic view taken by the statistical modeller. Indeed, consider the simple data setting of Examples 1 and 2. From a modeller’s perspective, MAR might usefully mean that missingness depends on Y_1 but not on Y_2, whereas from a probabilistic point of view, it merely means that Y_1 and Y_2 influence missingness among the completers, although missingness is determined by Y_1 only among the incomplete observations.

This apparent discrepancy is resolved by noting that the modeller voluntarily restricts oneself to a practically meaningful sub-class of probabilistic MAR mechanisms. This notwithstanding, Molenberghs et al. (2007) provide examples of MAR mechanisms, often as so-called MAR counterparts to MNAR models, that would hardly be considered purely on grounds of appeal to the modeller. Also, Molenberghs et al. (1998) provide such an example, taking the form of a 2×2 contingency table subject to non-monotone missingness.
In the same spirit, for SPMs, the modeller may consider an SPM of MAR type, i.e., a model fulfilling the characterization of Theorem 2, practically unnatural. In this respect, the sub-class of Definition 2 may or may not be deemed a practically more appealing choice.

When measurements are collected longitudinally, then typically time is prominently present in model formulation, and most model choices will be judged in the light of their (un)desirable time-related implications. The presence of ‘time’ also provides a vehicle to make the set of measurements that influence missingness vary from pattern to pattern, while retaining an intuitively appealing flavour. For example, when missingness is confined to dropout, a natural restriction is to allow only past measurements influence dropout, an MAR mechanism. Evidently, the set of past measurements is not static, but itself a function of the time point at which dropout occurs.

These and other proper-time-dependence considerations are the subject of the next section.

6 Longitudinal data with dropout: non-future dependence

When measurements are taken longitudinally, it is good practice to ensure that the implied time dependencies are logical from a substantive standpoint. For example, in a variety of contexts, such as growth, regression functions over time may be constrained to non-decreasing forms.

Let us turn to the nature of the missingness mechanism. Throughout the section, assume that missingness is confined to dropout. From a SeM perspective, one often classifies missing data mechanisms as (Diggle and Kenward, 1994): (1) independent of outcomes; (2) dependent on previous measurements only; (3) dependent on the current and perhaps previous measurements only; (4) fully arbitrary, i.e., where missingness can depend on previous, current and future measurements. Evidently, (1) is MCAR, (2) is MAR and (4) is MNAR, without restrictions. (Diggle and Kenward, 1994), e.g., did not consider (4) but restricted MNAR to mechanism (3) only. While this is very restrictive, it is also extremely appealing since it prevents dropout at a given point in time to depend on future measurements; these are termed as non-future dependent in the next section.

Clearly, the concepts of the previous paragraph are very natural by virtue of framing them in the SeM. Kenward et al. (2003) underscored that the situation is less clear in the PMM family and then translated the mechanisms from the SeM to the PMM framework. We will review these in Section 6.1, and then present a similar taxonomy for the SPM in Section 6.2.

6.1 Non-future dependence in the PMM framework

Since we are restricting attention to monotone missingness, we can easily indicate a dropout pattern by the numbers of observations made. In this sense, pattern \(t \) collects
all individuals with the first \(t \) measurements taken \((t = 1, \ldots, n)\). Thijs et al. (2002) constructed a general identifying-restrictions framework in which the distribution of the \((t + 1)\)th measurement, given the earlier measurements, in pattern \(t \), \(y_{t+1} \) say, is set equal to a linear combination of the corresponding distributions in patterns \(t + 1 \) to \(n \). Since this family is characterized by the use of observable distributions to identify the unobservable ones, we term it the ‘interior’ family of identifying restrictions. Three members of this family are studied in detail by Thijs et al. (2002): complete-case missing value restrictions (Little, 1993), where information is borrowed from the completers only, ACMV, equivalent to MAR (Molenberghs et al. (1998); see also Section 5), for which a particular linear combination needs to be considered, and neighbouring-case missing value restrictions, where information is borrowed from the closest available pattern.

The equivalence of ACMV and MAR is important in that it enables us to make a clear connection between the selection and pattern-mixture frameworks. By implication, the other members of the interior family are of MNAR type, while at the same time there do exist MNAR-type restrictions that are not captured by this family.

We will now characterize missing-data mechanisms that prevent missingness from depending on future unobserved measurements. To this effect, it is useful to consider the SeM and PMM factorizations for the specific context of longitudinal data. Let \(r = t \leq n \) be the number of measurements actually observed. The SeM factorization for this context is given by

\[
f(y_1, \ldots, y_n, r = t) = f(y_1, \ldots, y_n) f(r = t|y_1, \ldots, y_n).
\]

PMM now take the form

\[
\begin{align*}
 f(y_1, \ldots, y_n, r = t) &= f(y_1, \ldots, y_n) f(r = t|y_1, \ldots, y_n) \\
 &= f_t(y_1, \ldots, y_n) f(r = t|y_1, \ldots, y_n) \\
 &= f_t(y_1, \ldots, y_t) f_t(y_{t+1}|y_1, \ldots, y_t) f_t(y_{t+2}, \ldots, y_n|y_1, \ldots, y_{t+1}) f(r = t),
\end{align*}
\]

where \(f_t(y_1, \ldots, y_n) = f(y_1, \ldots, y_n|r = t) \). The first three factors in (6.1) are referred to as the distributions of past, present and future measurements, respectively. Only the first and the fourth factors are identifiable from the data.

Definition 3 (Non-future Dependence (NFD)). In the SeM context, we can formulate missing non-future dependent as

\[
f(r = t|y_1, \ldots, y_n) = f(r = t|y_1, \ldots, y_{t+1}).
\]

Note that MAR is a special case of missing non-future dependent, which in turn is a sub-class of MNAR.
Definition 4 (Non-future-dependent Missing Value (NFMV) Restrictions). Within the PMM framework, we define NFMV restrictions as follows:

\[f(y_t \mid y_1, \ldots, y_{t-1}, r = j) = f(y_t \mid y_1, \ldots, y_{t-1}, r \geq t - 1), \quad (6.3) \]

for all \(t \geq 2 \) and all \(j < t - 1 \).

Non-future missing values is not a comprehensive set of restrictions, but rather leaves one conditional distribution per incomplete pattern unidentified:

\[f(y_{t+1} \mid y_1, \ldots, y_t, r = t). \quad (6.4) \]

In other words, the distribution of the ‘current’ unobserved measurement, given the previous ones, is unconstrained. This implies that the NFMV class contains members outside of the interior family, where every restriction takes the form of a linear combination of observable distributions. Conversely, (6.3) excludes such mechanisms as complete-case missing values and neighbouring-case missing values, showing that there are members of the interior family that are not of non-future missing values type. Finally, choosing (6.4) of the same functional form as (6.3) establishes ACMV as a member of the intersection of the interior and non-future missing values families. The latter is particularly important since it shows, because of the equivalence of ACMV and MAR, that MAR belongs to both families.

The following theorem, the proof of which is to be found in Kenward et al. (2003), establishes the equivalence between NFD and NFMV, showing that the NFMV restrictions correspond to NFD, just as ACMV corresponds to MAR.

Theorem 4 (Equivalence between NFD and NFMV). For longitudinal data with dropouts, missing NFD is equivalent to non-future missing values.

A consequence of using (6.3) is that the joint distribution will not typically have a simple analytical representation. This is to be understood in the sense that covariate effects would not necessarily be linear on an appropriate scale. However, this is not to say that there is no analytical form. Moreover, it does not have to be a major disadvantage, provided the resulting distribution is empirically reasonable. Such a requirement may help guide the choice for (6.4). Kenward et al. (2003) offered a tractable, sampling-based implementation and applied it to the analysis of a set of data.

6.2 Non-future dependence in the SPM framework

It is now particularly easy to derive a general characterization of non-future-dependent SPM. First, note that (6.2) in Definition 3 can be seen as a longitudinal dropout-based definition of MAR, ‘one component shifted to the right’, i.e., where \(y_{t+1} \), in spite of its missingness, is also allowed to influence missingness. Given that
Generalized shared-parameter models and missingness at random

Theorem 2 was derived from the standard MAR definition, it immediately follows that a characterization of NFD-SPM is as follows.

Theorem 5 (Non-future-dependent SPM). A member of the general SPM family (4.5) is NFD if and only if

\[
\frac{\int f(y_{pc}^i | g_i, h_i, j_i) f(y_{f}^i | y_{pc}^i, g_i, h_i, j_i) f(b_i) \, db_i}{\int f(y_{f}^i | g_i, j_i) f(r_i | g_i, j_i) f(b_i) \, db_i} = \frac{\int f(y_{pc}^i | g_i, h_i) f(y_{f}^i | y_{pc}^i, g_i, h_i) f(b_i) \, db_i}{f(y_{f}^i)},
\]

(6.5)

where \(y_{pc}^i = (y_1, \ldots, y_{t+1})' \) and \(y_{f}^i = (y_{t+2}, \ldots, y_n)' \).

Note that the superscript ‘pc’ refers to ‘previous and current,’ while ‘f’ refers to ‘future.’

Likewise, the sub-class (4.7) of Definition 2 can be ‘shifted’ to yield an NFD version.

Definition 5 (A NFD Sub-class of SPM). Define a sub-class of SPM (4.5):

\[
f(y_{pc}^i | j_i, \ell_i) f(y_{f}^i | y_{pc}^i, m_i) f(r_i | j_i, q_i),
\]

(6.6)

where \(j_i, \ell_i, m_i \) and \(q_i \) are independent random-effects vectors.

The key assumption here is that all information about the missing data is contained in the observed data, given which no further information is needed from neither the missing data mechanism nor the random effects. With similar logic as before, Definition 5 offers a class of missing-data mechanism that belongs to the NFD family. The relationship between the various mechanisms in the three families is depicted in Figure 1.

7 The toenail data

The data introduced in this section were obtained from a randomized, double-blind, parallel group, multicentre study for the comparison of two oral treatments (in the sequel coded as A and B) for toenail dermatophyte onychomycosis (TDO), described in full detail by De Backer et al. (1996). TDO is a common toenail infection, difficult to treat, affecting more than 2 out of 100 persons (Roberts, 1992). Anti-fungal compounds, classically used for treatment of TDO, need to be taken until the whole nail has grown out healthy. The development of such new compounds, however, has reduced the treatment duration to 3 months. The aim of the present study was to
Figure 1 Subset relationships between nested families within the SeM, pattern-mixture model (PMM) and SPM families. The vertical two-headed arrows indicate equivalence between mechanisms across model families.
Generalized shared-parameter models and missingness at random

Figure 2: Toenail data. Individual profiles of 30 randomly selected subjects in each of the treatment groups in the toenail experiment

Table 2: Toenail data. Number and percentage of patients (N) with severe toenail infection, for each treatment arm separately

<table>
<thead>
<tr>
<th>Group</th>
<th># Severe</th>
<th>N</th>
<th>%</th>
<th># Severe</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>54</td>
<td>146</td>
<td>37.0</td>
<td>55</td>
<td>148</td>
<td>37.2</td>
</tr>
<tr>
<td>1 month</td>
<td>49</td>
<td>141</td>
<td>34.7</td>
<td>48</td>
<td>147</td>
<td>32.6</td>
</tr>
<tr>
<td>2 months</td>
<td>44</td>
<td>138</td>
<td>31.9</td>
<td>40</td>
<td>145</td>
<td>27.6</td>
</tr>
<tr>
<td>3 months</td>
<td>29</td>
<td>132</td>
<td>22.0</td>
<td>29</td>
<td>140</td>
<td>20.7</td>
</tr>
<tr>
<td>6 months</td>
<td>14</td>
<td>130</td>
<td>10.8</td>
<td>8</td>
<td>133</td>
<td>6.0</td>
</tr>
<tr>
<td>9 months</td>
<td>10</td>
<td>117</td>
<td>8.5</td>
<td>8</td>
<td>127</td>
<td>6.3</td>
</tr>
<tr>
<td>12 months</td>
<td>14</td>
<td>133</td>
<td>10.5</td>
<td>6</td>
<td>131</td>
<td>4.6</td>
</tr>
</tbody>
</table>

of patients with severe infections is given in Table 2. A graphical representation is given in Figure 3. Due to a variety of reasons, the outcome has been measured at all seven scheduled time points, for only 224 (76%) out of the 294 participants. Table 3 summarizes the number of available repeated measurements per subject, for both treatment groups separately. We see that the occurrence of missingness is similar in both treatment groups.

We will first analyse the entire longitudinal profile of continuous outcomes (unaffected nail length), and then switch to the binary outcome (severity of infection) and confine attention to the first and last time points.

7.1 Continuous unaffected nail length

Consider a general model of the form (4.5), with random effects confined to g_i, i.e., common to all three components. For the measurement model, assume a linear mixed
Toenail data. Evolution of the observed percentage of severe toenail infections in the two treatment groups separately

<table>
<thead>
<tr>
<th>Time (months)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>% severe infections</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 3

Table 3

<table>
<thead>
<tr>
<th>Number of observations</th>
<th>Group A</th>
<th></th>
<th>Group B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>%</td>
<td>N</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>107</td>
<td>73.29</td>
<td>117</td>
<td>79.05</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>17.12</td>
<td>14</td>
<td>9.46</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1.37</td>
<td>8</td>
<td>5.41</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1.37</td>
<td>4</td>
<td>2.70</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2.74</td>
<td>3</td>
<td>2.03</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1.37</td>
<td>1</td>
<td>0.68</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>2.74</td>
<td>1</td>
<td>0.68</td>
</tr>
<tr>
<td>Total</td>
<td>146</td>
<td>100</td>
<td>148</td>
<td>100</td>
</tr>
</tbody>
</table>

model (Verbeke and Molenberghs, 2000), with general form:

\[
Y_i | g_i \sim N(X_i \beta + Z_i g_i, \Sigma_i), \quad (7.1)
\]

\[
g_i \sim N(0, D). \quad (7.2)
\]

Based on (7.1) and (7.2), the so-called marginal model can be derived as follows:

\[
Y_i \sim N(X_i \beta, Z_i DZ_i + \Sigma_i). \quad (7.3)
\]

To compute the model’s prediction for the unobserved data, given the observed measurements, the corresponding density needs to be derived. To this end, first
decompose the mean and variance in (7.1) as
\[
\begin{pmatrix} Y_o^i \\ Y_m^i \end{pmatrix} \mid g_i \sim N \left[\begin{pmatrix} X_o^i \\ X_m^i \end{pmatrix} \beta + \begin{pmatrix} Z_o^i \\ Z_m^i \end{pmatrix} g_i, \begin{pmatrix} \Sigma_{oo} \Sigma_{om} \\ \Sigma_{mo} \Sigma_{mm} \end{pmatrix} \right].
\]
This expression can easily be used to construct the conditional density
\[
Y_m^i \mid y_o^i, g_i \sim N \left[(X_m^i - \Sigma_{im} \{\Sigma_{ii}^{-1}\} X_o^i)\beta + \Sigma_{im} \{\Sigma_{ii}^{-1}\} y_o^i, \Sigma_{mm} - \Sigma_{im} \{\Sigma_{ii}^{-1}\} \Sigma_{om} \right].
\] (7.4)
Now, (7.4) corresponds to the model as formulated and will typically be of the MNAR type. To derive the MAR counterpart, we need to integrate over the random effect. With similar logic that leads to (7.3), now applied to (7.4), we obtain
\[
Y_m^i \mid y_o^i \sim N \left[(X_m^i - \Sigma_{im} \{\Sigma_{ii}^{-1}\} X_o^i)\beta + \Sigma_{im} \{\Sigma_{ii}^{-1}\} y_o^i, \right.
\]
\[
\Sigma_{mm} - \Sigma_{im} \{\Sigma_{ii}^{-1}\} \Sigma_{om} \].
\] (7.5)
Hence, (7.5) is the MAR counterpart to (7.4). For the unaffected nail length, we choose for (7.1)–(7.2):
\[
E(Y_{ij} \mid g_i, T_i, t_j, \beta) = \beta_0 + g_i + \beta_1 T_i + \beta_2 t_j + \beta_3 T_i t_j,
\] (7.6)
g_i \sim N(0, d), and \Sigma_i = \sigma^2 I_7, where \(I_7 \) is a 7 \times 7 identity matrix. Further, \(T_i = 0 \) if patient \(i \) received standard treatment and 1 for experimental therapy (\(i = 1, \ldots, 298 \)). Finally, \(t_j \) is the time at which the \(j \)th measurement is taken (\(j = 1, \ldots, 7 \)).

Given these choices, (7.4) and (7.5) simplify to
\[
Y_i^m \mid y_i^o, g_i \sim N(X_i\beta + Z_i^m g_i, \sigma^2 I_7),
\] (7.7)
\[
Y_i^m \mid y_i^o \sim N(X_i\beta, dJ_i + \sigma^2 I_7),
\] (7.8)
with \(I_7 \) an identity matrix and \(J_i \) a matrix of ones, with dimensions equal to the number of missing measurements for subject \(i \). Especially owing to the conditional independence assumption, the simplification is dramatic.

Next, let us formulate a model for the missingness mechanism in (4.5). The sequence \(r_i \) can take one of two forms in our case. Either it is a length-7 vector of ones, for a completely observed subject, or it is a sequence of \(k \) ones followed by a sole zero \(1 \leq k \leq 6 \), for someone dropping out. Note that \(k \) is 1 at least, since
for everyone the initial measurement has been observed. It is convenient to assume a logistic regression of the form

$$\logit \left[P(R_{ij} = 1 | R_{i,j-1} = 0, g_i, T_i, t_j, y) \right] = \gamma_0 + \gamma_{01} g_i + \gamma_1 T_i + \gamma_2 t_j + \gamma_3 T_i t_j, \quad (7.9)$$

($j > 1$), where γ_{01} is a scale factor for the shared random effect in the missingness model; forcing the variance in the measurement and dropout indicator sequences to be equal would make no sense. As a result, $\gamma_{01} g_i \sim N(0, \gamma_{01}^2)$.

The model specified by (7.6) and (7.9) can easily be fitted using, e.g., the SAS procedure NLMIXED, details about which are provided in the Appendix.

Parameter estimates and standard errors are displayed in Table 4. It is noteworthy that the scale factor γ_{01} is estimated to be negative, even though it is not significant. While we should not overly stress its importance, there is some indication that a higher subject-specific profile of unaffected nail length corresponds with a lower dropout probability, which is not surprising. The magnitude of the scale factor allows us to 'translate' the subject-specific effect from the continuous outcome scale, expressed in millimetres, to the unitless logit scale on which the probability of missingness is described. Note that the random-intercept variance is highly significant among unaffected nail length outcomes; the same is not true for the dropout model, with $p = 0.2487$, using a 50:50 mixture of a χ^2_0 and χ^2_1 distribution (Verbeke and Molenberghs, 2000).

Figure 4 displays the incomplete profiles, extended beyond the time of dropout, using prediction based on: (i) the original model (dashed lines) and (ii) the MAR counterpart (solid lines). Within each of the treatment arms, three profiles are highlighted. The MAR counterpart reduces all predictions to the same profile, whereas the MNAR model predicts different evolutions for different subjects, implied by the presence of the random effect. The simple MAR-based prediction structure follows directly from the conditional independence assumption, present in (7.7). When deemed less plausible, the fully general structure (7.4) can be implemented.
Figure 4 Toenail data. Individual profiles of subjects with incomplete data, for each treatment arm, extended using MNAR Model (7.6) (dashed lines) and using the model’s MAR counterpart (solid lines). In each group, three subjects are highlighted.

7.2 Dichotomous severity of infection

Let us turn attention to the binary severity of infection outcome, for the pair of time points formed by the always recorded initial measurement and the sometimes missing final point in time. The data are displayed in Table 5. By way of illustration, we will assume a single dichotomous random effect, of the \(g \) type. This imposes a latent-class structure. Decompose the cell probabilities as

\[
\pi_{gt|i_2|t} = \pi_g \pi_{i_1|g} \pi_{i_2|j_1|gt} \pi_{r|g},
\]

with \(g = 0, 1 \) indicating the latent class, \(i_1, i_2 = 0, 1 \) non-severe versus severe infection at the first and last occasions, respectively, \(r = 0, 1 \) referring to the dropouts versus completers groups and \(t = 0, 1 \) denoting standard versus experimental treatment arm. The probability factors on the right-hand side of (7.10) are modelled as

\[
\pi_g = \frac{e^{\alpha g}}{1 + e^{\alpha}},
\]

\[
\pi_{i_1|g} = \frac{e^{(\beta_0 + \beta_1 g) i_1}}{1 + e^{\beta_0 + \beta_1 g}},
\]

\[
\pi_{i_2|j_1|gt} = \frac{e^{(\gamma_0 + \gamma_1 i_1 + \gamma_2 g + \gamma_3 i_1 g + \gamma_4 t) i_2}}{1 + e^{\gamma_0 + \gamma_1 i_1 + \gamma_2 g + \gamma_3 i_1 g + \gamma_4 t}},
\]

\[
\pi_{r|g} = \frac{e^{(\delta_0 + \delta_1 g)r}}{1 + e^{\delta_0 + \delta_1 g}}.
\]
Table 5 Toenail data. Bivariate binary severity index at first and last time points. The observed data are shown, as well as the fit of Models 'Bin1' and 'Bin2', together with their corresponding counterparts. Both the fit to the observed data as well as to the hypothetical complete data are shown.

<table>
<thead>
<tr>
<th></th>
<th>Standard treatment</th>
<th>Experimental treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Completers</td>
<td>Dropouts</td>
</tr>
<tr>
<td>Observed data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>42</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fit of Model 'Bin1'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76.85</td>
<td>5.66</td>
<td>9.04</td>
</tr>
<tr>
<td>40.60</td>
<td>7.99</td>
<td>4.62</td>
</tr>
<tr>
<td>Fit of Model 'Bin1(MAR)'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76.85</td>
<td>5.66</td>
<td>8.77</td>
</tr>
<tr>
<td>40.60</td>
<td>7.99</td>
<td>4.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fit of Model 'Bin2'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75.86</td>
<td>5.58</td>
<td>9.72</td>
</tr>
<tr>
<td>41.50</td>
<td>8.15</td>
<td>3.74</td>
</tr>
</tbody>
</table>

In Model ‘Bin1’, we will set $\beta_1 = 0$ in (7.11) for reasons of identifiability. In Model ‘Bin2’, $\gamma_2 = \gamma_3 = 0$ in (7.12). This implies that the latter model is of the MAR type, and hence its MAR counterpart will equal the original model. Fitted counts are presented in Table 5. For the dropout group, both the fit to the pair of observed counts and the prediction of the underlying unobserved 2×2 table is given. Note that the MAR counterpart preserves the distribution of the first outcome, within each treatment and dropout group; the difference between original model and MAR counterpart is confined to the distribution of the second outcome, given the first one. The fit of the models is obtained by replacing all quantities in (7.10) by their estimates, followed by summing over g. The MAR counterpart is obtained as $\pi_{g,t_{12}} = \pi_g \pi_{t_{12}} \pi_{t_{12} \mid t_{12}}$, where

$$\pi_{t_{12} \mid t_{12}} = \sum_g \pi_g \pi_{t_{12} \mid t_{12} \mid t_{12}}.$$

Parameter estimation by both maximum likelihood, as well as the expectation–maximization (EM) algorithm (Dempster et al. 1977) is particularly easy. For direct
likelihood, the log-likelihood function takes the form
\[
\ell = \sum_{i_1, i_2, t} Z_{i_1, i_2, t} \ln \left(\sum_g \pi_g \pi_{i_1 | g} \pi_{i_2 | i_1, g} \pi_{r | i_2, g, t} \right) + \sum_{i_1, t} Z_{i_1, t, r=0} \ln \left(\sum_g \pi_g \pi_{i_1 | g} \pi_{r=0 | g} \right),
\]
(7.13)
where \(Z_{i_1, i_2, r=1, t} \) and \(Z_{i_1, t, r=0} \) are the observed-data counts, with obvious notation. Maximization then proceeds by feeding (7.13) to a standard numerical optimizer.

The complete-data log-likelihood, needed for the EM algorithm, takes the form
\[
\ell^* = \sum_{g, i_1, i_2, t, r} Z^*_{g, i_1, i_2, t} \ln \left(\pi_g \pi_{i_1 | g} \pi_{i_2 | i_1, g} \pi_{r | i_2, g, t} \right)
\]
\[
= \sum_g Z^*_{g, i_1, i_2, t} \ln \left(\pi_g \right) + \sum_{g, i_1} Z^*_{g, i_1, i_2, t} \ln \left(\pi_{i_1 | g} \right)
\]
\[
+ \sum_{g, i_1, i_2, t} Z^*_{g, i_1, i_2, t} \ln \left(\pi_{i_2 | i_1, g, t} \right) + \sum_{g, r} Z^*_{g, r} \ln \left(\pi_{r | g} \right).
\]
(7.14)
Here, \(Z^*_{g, i_1, i_2, t} \) is the (hypothetical) count in bivariate severity category \((i_1, i_2)\), in missingness group \(r\), treatment arm \(t\), and allocated to latent class \(g\). A plus in lieu of a subscript indicates summation over the corresponding index. To proceed, the expected values of the complete-data sufficient statistics need to be computed. Thanks to the multinomial structure of \(\ell^* \), this is straightforward and hence the E-step consists of
\[
E \left(Z^*_{g, i_1, i_2, t} \right) = \pi_g Z_{i_1, i_2, t},
\]
\[
E \left(Z^*_{g, i_1, i_2, t} \right) = \pi_g \pi_{i_1 | g} Z_{i_1, i_2, t},
\]
\[
E \left(Z^*_{g, r} \right) = \pi_g Z_{i_1, t, r=1} + \pi_g \pi_{i_1 | i_2, g} Z_{i_1, r=0, t},
\]
\[
E \left(Z^*_{g, r} \right) = \pi_g \pi_{r | g} Z_{r}.\]
Finally, the M-step takes the form of four separate logistic regressions, in the \(\alpha \), \(\beta \), \(\gamma \) and \(\delta \) parameters, respectively, i.e., for each of the four terms in (7.14).

8 Concluding remarks

Incomplete data are governed by a number of taxonomies and classification systems, two of which were of relevance here. The first one is concerned with the type
of missing data mechanism (MCAR, MAR and MNAR), whereas the second one classifies joint models for the outcome and missing data processes as belonging to the SeM, PMM and SPM families. Since MCAR merely comes down to independence between both processes, perhaps conditional on fixed covariates, it takes a trivial form regardless of the model family. Whereas MAR has been defined in an SeM fashion, it has been characterized in a PMM way and studied further for the specific context of longitudinal data by Molenberghs et al. (1998). Characterizing MAR in the SPM family is less straightforward and, to our knowledge, had not formally been done before. As a first result, we have provided such a characterization in this paper, after defining a very general class of SPM that encompasses many earlier, specific instances. Since the characterization, in its full generality, may be somewhat awkward to work with, a more restrictive but appealing sub-class of SPM, satisfying MAR, has been proposed too.

Molenberghs et al. (2007) established that every MNAR model fitted to a particular set of data can be replaced by a unique MAR counterpart, i.e., a model producing exactly the same fit to the observed data but where the prediction of the unobserved outcomes given the observed ones is of the MAR type. While their result is general, they focused on the SeM and PMM frameworks. As a second result, we present a generic format of this counterpart for the SPM family.

Apart from considerations on the basis of taxonomy, particular design aspects may be used to further focus one's model choices. For example, in a longitudinal study subject to dropout, one will often cast missingness mechanisms in terms of previous, current and future measurements, rather than simply in terms of observed and unobserved measurements. There is a subtle distinction. While previous and observed measurements are synonymous in such a case, the unobserved measurements are further subdivided into current and future measurements. Substantively, it is usually conceivable to assume that dropout is driven by the current, perhaps unobserved measurement, but it will not always be sensible to let dropout depend on future measurements. Constraining a SeM to this effect is particularly straightforward, but this is less trivial for the other two families. While Kenward et al. (2003) translated this requirement to the PMM family, this had not yet been done for the SPM. As a third result, we characterize so-called non-future-dependent mechanisms within the SPM family.

While our results are predominantly of a conceptual nature, a number of them have been illustrated, for enhanced insight, using both a continuous and a binary outcome from a two-armed clinical trial in TDO. In the continuous case, a linear mixed model was combined with logistic regression contributions for dropout. In the binary case, a dichotomous random effect was assumed, i.e., a latent class, reducing the analysis to one of incompletely observed contingency tables. Evidently, within each of the analyses done, a wider variety of model specifications can be entertained. Moreover, the ideas developed in this paper are generic and one could consider generalized linear mixed models for the entire binary profile, etc. (Molenberghs and Verbeke, 2005).
Generalized shared-parameter models and missingness at random

It might appear counterintuitive that the issues arising from incompleteness are further compounded by allowing for a whole collection of random effects. While this adds a great deal of flexibility, thereby enabling proper characterization of MAR, it needs to be limited. In practice, substantive considerations would be critical in reducing the number of these, leaving a more manageable set which would form the basis for sensitivity analyses.

Finally, the results of this paper open avenues for sensitivity analysis regarding substantive conclusions with respect to missingness (Molenberghs and Kenward, 2007; Creemers et al., 2009). Thanks to the results in this paper and previous papers, and the ensuing classification of model families versus missing data mechanisms (Figure 1). One could, e.g., select an insightful set models across families and mechanisms, perhaps supplementing MNAR models with their MAR counterparts, and then assess formally or informally how key conclusions change when ranging over models.

Acknowledgements

We gratefully acknowledge support from Belgian IUAP/PAI network ‘Statistical Techniques and Modeling for Complex Substantive Questions with Complex Data’.

Appendix: SAS Implementation

Assume that we have a dataset, ‘toenailc02’, with variables ‘idnum’ an indicator for subject, ‘treat’ a (binary) indicator for treatment (‘0’ for standard arm, ‘1’ for the experimental arm) and ‘time’ time in months (0, 1, 2, 3, 6, 9 and 12 months). Further, the actual outcome, unaffected nail length, and the dropout indicators are stacked into a single variable ‘respons’, with ‘resptype’ indicating whether the outcome listed is of the former (‘1’) or the latter (‘0’) kind. It is sometimes convenient to dispose of character variables indicating the outcome distribution, ‘dist’, and the link function chosen ‘link’, respectively. The need for these two variables arises when one makes use of, e.g., the SAS procedure GLIMMIX, but they are superfluous with NLMIXED, the procedure used here.

Data for three typical subjects are as follows:

<table>
<thead>
<tr>
<th>idnum</th>
<th>treat</th>
<th>time</th>
<th>respons</th>
<th>resptype</th>
<th>dist</th>
<th>link</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>GAUS</td>
<td>IDEN</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>GAUS</td>
<td>IDEN</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>GAUS</td>
<td>IDEN</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>9</td>
<td>1</td>
<td>GAUS</td>
<td>IDEN</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>6</td>
<td>13</td>
<td>1</td>
<td>GAUS</td>
<td>IDEN</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>GAUS</td>
<td>IDEN</td>
</tr>
</tbody>
</table>
Subject #2 drops out at the last occasion, #3 completes the study and #18 drops out at the third month.

Since all subjects are observed at the baseline occasion (month 0), it is best to remove the corresponding line from the dataset:

```plaintext
data help;
set m.toenailc02;
if (resptype=0 and time=0) then respons=.;
run;
```

Statistical Modelling 2011; 11(4): 279–310
The NLMIXED procedure can then be invoked for parameter estimation and for prediction of unobserved measurements:

```
proc nlmixed data=help qpoints=20 maxiter=500;
parms beta0=3 beta1=-0.25 beta2=0.5 beta3=0.05
  gamma0=-3.5 gamma01=1 gamma1=0 gamma2=0 gamma3=0
  sigma=2.5 tau=2;
if resptype=1 then do;
  mean = beta0 + b + beta1*treat + beta2*time + beta3*treat*time;
  dens = -0.5*log(3.14159265358) - log(sigma)
    - 0.5*(respons-mean)**2/(sigma**2);
  ll = dens;
end;
else if resptype=0 then do;
  eta = gamma0 + b*gamma01 + gamma1*treat + gamma2*time
    + gamma3*treat*time;
  p = exp(eta)/(1+exp(eta));
  ll = respons*log(p) + (1-respons)*log(1-p);
end;
model respons ~ general(ll);
random b ~ normal(0,tau*tau) subject=idnum;
estimate 'tauˆ2' tau*tau;
estimate 'gamma01ˆ2*tauˆ2' gamma01*gamma01*tau*tau;
estimate 'sigmaˆ2' sigma*sigma;
predict (beta0 + b + beta1*treat + beta2*time + beta3*treat*time)
  out=m.toenailc2mnar;
predict (beta0 + beta1*treat + beta2*time + beta3*treat*time)
  out=m.toenailc2mar;
run;
```

The actual model consists, of course, of two parts. Using branching statements, a Gaussian likelihood contribution is calculated for unaffected nail length, whereas a Bernoulli contribution is calculated for the dropout indicators. Thanks to the ‘general’ likelihood feature in the MODEL statement, the user has a very large amount of freedom in model specification. Additional ESTIMATE statements lead to the direct determination of parameter estimates and standard errors for the variance components.

Finally, the two PREDICT statements determine the prediction of the unobserved measurements given the observed ones, using the model as it is, based on (7.7), or using the MAR counterpart, as in (7.8). Note that this is relatively simple, given the conditional independence assumption, as discussed in Section 7.1. Given that these predictions range over the entire measurement sequence and not only over the missing ones, we need to bring together the observed measurements until the time of dropout, and then switch to the predictions thereafter. Using the following code,
this is done for the original MNAR model and for the MAR counterparts. These two output datasets are then merged into a single one.

```sas
data m.toenailc2mnar;
set m.toenailc2mnar;
mnar=respons;
if resptype=0 then mnar=.;
if (respons=. and resptype=1) then mnar=pred;
run;
```

```sas
data m.toenailc2mar;
set m.toenailc2mar;
mar=respons;
if resptype=0 then mar=.;
if (respons=. and resptype=1) then mar=pred;
run;
```

```sas
data m.toenailc2m;
merge m.toenailc2mnar m.toenailc2mar;
if resptype=0 then delete;
keep idnum treat time respons mnar mar;
run;
```

The final dataset can now be used as a basis to construct, e.g., Figure 4.

References

Generalized shared-parameter models and missingness at random

Y. Pawitan, S. Self

310 An Creemers et al.

