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Abstract

Hierarchical models are common in complex surveys, psychometric applications, as well as
agricultural and biomedical applications, to name but a few. The context of interest here is
meta-analysis, with emphasis on the use of such an approach in the evaluation of surrogate
endpoints in randomized clinical trials. The methodology rests on the ability to replicate the
e8ect of treatment on both the true endpoint, as well as the candidate surrogate endpoint, across
a number of trials. However, while a meta-analysis of clinical trials in the same indication
seems the natural hierarchical structure, some authors have considered center or country as the
unit, either because no meta-analytic data were available or because, even when available, they
might not allow for a su9cient level of replication. This leaves us with two important, related
questions. First, how sensible is it to replace one level of replication by another one? Second,
what are the consequences when a truly three- or higher-level model (e.g., trial, center, patient)
is replaced by a coarser two-level structure (either trial and patient or center and patient). The
same or similar questions may occur in a number of di8erent settings, as soon as interest is
placed on the validity of a conclusion at a certain level of the hierarchy, such as in sociological
or genetic studies. Using the framework of normally distributed endpoints, these questions will
be studied, using both analytic calculation as well as Monte Carlo simulation.
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1. Introduction

In applied sciences, one is often confronted with the collection of correlated data.
This generic term embraces a multitude of data structures, such as multivariate observa-
tions, clustered data, repeated measurements, longitudinal data, and spatially correlated
data. Instances of this type of research can be encountered in virtually every empirical
branch of science. Di8erent areas of research will refer to the same or similar concepts
with di8erent terminology. For example, multilevel modeling (Goldstein, 1995) is a
frequently encountered term in sociological applications, whereas in classical experi-
mental design research one often refers to variance component models (Searle et al.,
1992).

A hierarchical structure can consist of more than two levels and examples also
abound in practice. Schooling systems, for instance, present an obvious multilevel
structure, with pupils grouped into classrooms, which are nested within schools which
themselves may be clustered within education authorities. Often in sample surveys, for
cost-related reasons or administrative considerations, multistage sampling schemes are
adopted. In multistage sampling, the sample is selected in stages, with the sampling
units at each stage being sub-sampled from the larger units drawn at the previous stage.
Thus, it immediately becomes apparent that a sample obtained by multistage sampling
is hierarchical in nature and, therefore, we need to analyze such data using appropriate
hierarchical techniques.

Sometimes, not only the design is hierarchical, but in addition, the formulation of
the research question involves a particular level of such a hierarchy. There might then
be clear dangers associated to misspecifying the hierarchical structure.

In surrogate marker evaluation, one may be interested in association between the true
endpoint and the surrogate endpoints at di8erent levels (individual-level and trial-level)
but on the one hand data may have more than two levels while on the other hand one
may have to resort to an alternative for the level of trial if not enough trial-level
replication is at hand. This particular problem has motivated this research.

The aim of this paper is to evaluate the performance of di8erent modelling strategies
which allow us to tackle the problems described above. An overview of the method-
ological steps that have led to the multi-level setup in surrogate marker evaluation
is given in Section 2. Two clinical studies in schizophrenia, where di8erent units of
analysis can be considered, are introduced in Section 2.1. An alternative area of appli-
cation is found in survey research. Data from the Belgian Health Interview Survey are
described in Section 3. The meta-analytic setting, to be used throughout the paper, is
introduced in Section 4. The di8erent analytic approaches are presented in Section 5.
A simulation study is reported in Section 6. With the results of the simulation study
in mind, the data are analyzed in Section 7.

2. Surrogate marker validation

Surrogate endpoints are referred to as endpoints that can replace or supplement
other endpoints in the evaluation of experimental treatments or other interventions.
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For example, surrogate endpoints are useful when they can be measured earlier, more
conveniently, or more frequently than the endpoints of interest, which are referred to
as the “true” endpoints (Ellenberg and Hamilton, 1989). Prentice (1989) proposed a
formal deNnition of surrogate endpoints and outlined how potential surrogate endpoints
could be validated.

Buyse et al. (2000) suggested the use of combined evidence from several clinical
trials, such as in a meta-analysis, rather than from a single study. To this end, they
needed to formulate a bivariate hierarchical model, accommodating the surrogate and
true endpoints in a multi-trial setting.

Of course, the switch to a meta-analytic framework does not solve all problems
surrounding surrogate marker validation in a deNnitive way. A result of the change
to meta-analysis is that computationally rather involved statistical models have to be
used. For the case of surrogates and true endpoints that are both normally distributed,
Buyse et al. (2000) employed linear mixed-e8ects models (Verbeke and Molenberghs,
2000). Even in this case, which from a statistical modeling point of view can be
considered a basic one, Ntting such linear mixed models turns out to be surprisingly
di9cult. Tibaldi et al. (2003) carefully studied this computationally-oriented issue. They
have investigated several simpliNed strategies to deal with the computational burden
posed by using such hierarchical linear models, primarily in the context of validating
surrogate markers. These strategies are ordered following three choices: (1) whether
trial-speciNc parameters are treated as random or Nxed, (2) whether the endpoints are
treated as correlated or not (bivariate versus univariate) and (3) the method of dealing
with measurement error. As a result of their investigation, they recommend simpliNed
computational methods for two main reasons. First, the methods are generally faster
and easier to implement with standard software. Second, Tibaldi et al. (2003) showed,
through simulations, that the simpliNed approaches often perform almost as good as
the more advanced methods, and moreover enjoy much better convergence properties.
As a cautionary remark, it needs to be emphasized that these results were derived in
the context of normally distributed endpoints. Di8erent types of outcomes (e.g., of a
generalized linear type) may lead to a somewhat di8erent picture (see., for example
Xiang et al., 2002; Concordet and Nunez, 2002).

Very important issues arise from the choice of levels within such a hierarchical
analysis. Indeed, while perhaps the most natural choice seems to be the one of trial, in
practice, other units have been used in the validation process. Indeed, several authors
have made alternative choices for reasons of convenience which then leaves us with
the question of whether such particular unit will provide us with a good representation
of what is happening at the targeted trial level. For example, Buyse et al. (2000),
Burzykowski et al. (2001), and Alonso et al. (2002) considered a number of case
studies, using either center or country as unit of analysis, rather than trial. Given that
the construction of the trial-level surrogacy hinges on the choice of independent unit
which preferably is trial, it is necessary to study the impact of deviations of such a
choice. There are two broad classes of deviations from such an approach. First, as
was done in some of the works cited earlier, some authors change from trial to center,
country, or investigator, for reasons of convenience. Indeed, one may have higher
number of replication over such alternative units than over trial. Second, the true data
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Table 1
Psychiatric study I: number of units with a given number of patients

Patients Units Patients Units
per unit (n) with n patients per unit (n) with n patients

2 29 10 2
3 18 11 4
4 23 12 2
5 16 13 3
6 9 15 1
7 12 18 1
8 10 21 1
9 6 30 1

generating mechanism can and will often be hierarchical with more than two levels,
such as patients within centers and at the same time centers within trials. The impact of
such deviations on the study result are important and will be considered here in terms
of their statistical and numerical properties. Analytic considerations are supplemented
with results from small sample simulations and illustrated using data from two clinical
trials in schizophrenic patients.

2.1. Clinical studies in schizophrenia

The Nrst of the two psychiatric studies in schizophrenic patients is based on a
meta-analysis containing only Nve trials. This is insu9cient to apply the meta-analytic
methods. In all of the trials, information is also available on the investigators which
treated the patients. Thus, we can also use investigator as the unit of analysis. For this
case a total of 138 units are available for analysis, with the number of patients per unit
ranging from 2 to 30. The true endpoint is Clinician’s Global Impression (CGI). This
is a 7-grade scale used by the treating physician to characterize how well a subject is
doing. As a surrogate measure, we consider the Positive and Negative Syndrome Scale
(PANSS) (Kay et al., 1988). The PANSS consists of 30 items that provide an oper-
ationalized, drug-sensitive instrument, which is highly useful for both typological and
dimensional assessment of schizophrenia. Table 1 shows the frequency of unit-speciNc
sample sizes. Clearly, the majority of units consists of less than 5 patients.

Alternatively, one could also consider the main investigator as unit of analysis. For
4 out of the 5 trials, only one main investigator was used leading to extremely large
investigator sites. This leads to a total number of 29 units with the number of patients
per unit ranging from 4 to 450, 4 of which represent trials. Another possibility is to
consider the countries where patients were treated, which fortunately is also available.
Hence, we can also use country within trial as the unit of analysis. In this case a total
of 19 units are available, with the number of patients per unit ranging from 9 to 128.
The comparison of the three di8erent choices will be used as an empirical assessment
as to the importance the choice of unit can have on the results.

In addition, we will use data from an international equivalence trial (INT-10) on
schizophrenic patients (Nair and the Risperidone Study Group, 1998). The trial included
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206 schizophrenic patients. All patients received an equal daily amount of risperidone
during 8 weeks, but 103 patients were randomized to a one-time daily intake (O.D.),
while the remaining 103 patients were randomized to receive risperidone twice a day
(B.I.D.). The surrogate and true endpoints are again PANNS and CGI, respectively.
We will consider the investigator as the unit of analysis. This leads to a total of
34 units available for analysis with the number of patients per unit ranging from
2 to 15.

3. The Belgian Health Interview Survey

In 1997, the second Belgian Health Interview Survey took place (HIS1997). The
HIS1997 was conducted to evaluate the usefulness of a periodic health-related survey,
with the idea to collect information on the subjective health of the Belgian population,
as well as on important predictor variables.

The survey is still ongoing (the second one took place in 2001) and the main goal
of the HIS is to give a description of the health status of the overall population in
Belgium as well as of the three regional subpopulations (Flemish, Walloon and Brussels
region), and in addition of the German community.

The total number of successful interviews for the sample in the HIS1997 was set to
10,000. The sampling of the households and respondents is a combination of several
sampling techniques: stratiNcation, multistage sampling and clustering, and di8erential
selection probabilities. The sampling of respondents took place in the following steps:
(1) stratiNcation by region and province, (2) selection of the municipalities within each
stratum, (3) selection of a cluster of households within each municipality and (4) selec-
tion of respondents within a household. Such a multi-stage design with municipalities
as primary selection units is a feasible solution.

Second- and third-stage selection units are households within municipalities and in-
dividuals within households, respectively. Municipalities are established administrative
units. They are stable (in general they do not change during the time the survey is
conducted) and they are easy to use in comparison with other specialized sources of
data related to the survey. Municipalities are preferred above regions or provinces,
because the latter are too large and too few. The large variation in the size of the
municipalities is controlled for by systematically sampling within a province with a
selection probability proportional to their size.

The three-level hierarchy encountered here, is simpler than the one in surrogate
marker evaluation, where we have two endpoints (surrogate and true), and hence a
pair of three-level structures. Strictly speaking, the latter situation could therefore be
seen as a four-level structure.

4. Model description and setting

In this section, we will introduce a three-level model for normally distributed end-
points. This model will allow us to consider the fully general case of a three-way
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hierarchy (e.g., patients within centers and centers within trials), as well as sub-cases
that are of a two-level type. The emphasis will be on the surrogate marker situation,
where such a model is needed for both the surrogate as well as the true endpoint. For
cases such as the Health Interview Survey, the setting simpliNes to just one hierar-
chical model. At the same time, the impact of misspeciNcation by modelling the data
as if they arose from a two-way structure, even though they were generated under a
three-way model, can be assessed. In addition, the impact of considering the sub-unit
e8ects as Nxed, even though they are generated using a random-e8ects model, is stud-
ied. Let Tijk and Sijk be random variables denoting the true and the surrogate endpoints
for subject k =1; : : : ; nij in center j=1; : : : ; Ni within trial i=1; : : : ; M . Further, let Zijk

denote a binary treatment indicator. The full three-way random-e8ects model, as it was
introduced by Buyse et al. (2000) for the two-way hierarchy, can the be written as

Sijk = �S + mSi + mSij + (� + ai + aij)Zijk + �Sijk ;

Tijk = �T + mTi + mTij + (� + bi + bij)Zijk + �Tijk ; (1)

where �S and �T are Nxed intercepts, mSi and mTi are random intercepts for trial
i, and mSij and mTij are random intercepts for center j in trial i. The parameters
� and � are Nxed treatment e8ects, ai and bi are random treatment e8ects associ-
ated with trial and aij and bij are random treatment e8ects related to center. The
individual-speciNc error terms are �Sijk and �Tijk . The vector of random e8ects associ-
ated with trial, (mSi ; mTi ; ai; bi)T, is assumed to be zero-mean normally distributed with
variance–covariance matrix

D =




dSS dST dSa dSb

dST dTT dTa dTb

dSa dTa daa dab

dSb dSa dab dbb


 : (2)

The vector of random e8ects associated with center, (mSij ; mTij ; aij; bij)T, is also assumed
to be zero-mean normally distributed with variance–covariance matrix

D′ =




d′
SS d′

ST d′
Sa d′

Sb

d′
ST d′

TT d′
Ta d′

Tb

d′
Sa d′

Ta d′
aa d′

ab

d′
Sb d′

Sa d′
ab d′

bb


 : (3)

Finally, the individual-level error terms (�Sijk ; �Tijk)
T are also zero-mean normally dis-

tributed with variance–covariance matrix

� =

(
�SS �ST

�ST �TT

)
: (4)
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Parameter estimation can be based on, for example, maximum likelihood or restricted
maximum likelihood (Verbeke and Molenberghs, 2000). Several authors, cited in the
introduction, have employed this strategy.

Clearly, (1) is not free from modeling assumptions. For example, one might want
to entertain Nxed e8ects rather than random e8ects. This will be considered in Sec-
tion 5, where the second strategy would then be very appropriate. Indeed, Ntting a
random-e8ects model in such a case might lead to incorrectly attributing components
of variability. Further, the joint normality of (1) implies that the regression of Tijk

on Sijk is linear, whereas in reality a nonlinear association might apply. In practice,
therefore, one may want to carefully assess the Nt of the model. For the purpose of
this article, model (1) is considered a versatile paradigm.

In the remainder of the section, we will brieTy sketch the use of these models in
surrogate marker validation. Of course, this is not relevant for the HIS example. The
next step considered in the methodology proposed by Buyse et al. (2000) focused on
prediction. Precisely, assuming one considers a new trial, i=0 say, for which data are
available on the surrogate endpoint but not on the true endpoint, the goal is to predict
the outcome on the true endpoint. We are interested in the estimated e8ect of treatment
Z on true endpoint T , given the e8ect of Z on the surrogate S for this particular trial.
Let us subscript all quantities pertaining to the particular trial under study with 0.

It is easy to show (Buyse et al., 2000) that (� + b0|mS0; a0) follows a normal
distribution with mean and variance:

E(� + b0|mS0; a0) = � +

(
dSb

dab

)T(
dSS dSa

dSa daa

)−1(
�S0 − �S

�0 − �

)
; (5)

Var(� + b0|mS0; a0) = dbb −
(

dSb

dab

)T(
dSS dSa

dSa daa

)−1(
dSb

dab

)
: (6)

Related to prediction equations (5)–(6), a measure to assess the quality of the surro-
gate at the trial level, as it was stated by Buyse et al. (2000), is the coe9cient of
determination

R2
trial (f ) = R2

bi|mSi;ai =

(
dSb

dab

)T(
dSS dSa

dSa daa

)−1(
dSb

dab

)

dbb
: (7)

Similarly, to measure individual-level surrogacy, Buyse et al. (2000) proposed to use
the coe9cient of determination given by

R2
indiv =

�2
ST

�SS�TT
; (8)

where �ST , �SS and �TT are components of variance–covariance matrix (4).
As Buyse et al. (2000) posed, R2

trial (f ) = 1 and R2
indiv = 1 indicate perfect surrogacy

at the trial and individual level, respectively. Realistically, one could call a surrogate
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‘good’ at a certain level, if the corresponding R2 is su9ciently close to one. Of course,
this is not just a statistical matter but rather a combination of statistical and substantive
considerations.

Intuition can be gained by considering the simpliNed case where the prediction of
�+b0 is done independently of the random intercept mS0. Coe9cient (7) then reduces
to

R2
trail (r) = R2

bi|ai =
d2
ab

daadbb
; (9)

which is simply the square of the correlation coe9cient for ai and bi. This formula
is useful when the full random-e8ects model is hard to Nt but a reduced version,
excluding random intercepts, is easier to reach convergence. It is simply the square
of the correlation between ai and bi. Note that R2

trail (r) = 1 if the trial-level treatment
e8ects are simply multiples of each other.

In our three-level context, the same procedure can be followed for the center level
and R2

center (r) and R2
center (f ) can be computed a way similar to (7) and (9) using matrix

(3), providing us with an assessment of the center-level surrogacy.

5. Modeling strategies

Tibaldi et al. (2003) showed that, in the two-level hierarchy, Ntting random-e8ects
model (1) can be replaced by simpliNed computational methods. In the remainder of
this paper simpliNed methods will be used to face the computational challenges. In
particular, we consider three strategies:
Strategy I: Two-Level Only. This pertains to the case where, in spite of the three-

level data generating mechanism, we consider either the trial level or center level for
analysis and for validation, but not both. The trial and center-speciNc e8ects are treated
as Nxed.
Strategy II: Three Levels, Fixed E;ects. A model in which the full three-level

structure of the data is included. Both the trial-speciNc and the center-speciNc e8ects
are treated as Nxed.
Strategy III: Three Levels, Random E;ects. A model in which the full three-level

structure of the data is included. Both the trial-speciNc and center-speciNc e8ects are
treated as random.

We will now discuss each of these three strategies in turn.

5.1. Strategy I: two-level only

Here again, we will put emphasis on the surrogate marker evaluation context, the
Health Interview Survey context being a simpliNcation of this one. As stated before,
the parameters of the full random-e8ects model (1) can be estimated by maximum like-
lihood or restricted maximum likelihood, using standard linear mixed model software
such as the SAS procedure MIXED (Verbeke and Molenberghs, 2000).
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5.1.1. Trial level only
In case we only consider the trial level for the validation process, exactly as Tibaldi

et al. (2003), we can rewrite and simplify the model as

Sijk = �Si + �iZijk + �Sijk ;

Tijk = �Ti + �iZijk + �Tijk ; (10)

where �Si , �Ti , �i, and �i are trial-speciNc intercepts and treatment e8ects. In ad-
dition, the univariate approach is opted for and hence errors (�Sijk ,�Tijk ) in (10) are
assumed independent, rather than correlated. Tibaldi et al. (2003) showed that this ap-
proach is computationally advantageous, while resulting in little or no loss of e9ciency
when the emphasis is on the trial-level surrogacy. Of course, if one is interested in
individual-level surrogacy as well, the correlation between the outcomes needs to be
accounted for. At the second stage, a regression model is Ntted to the treatment e8ects,
estimated at the Nrst stage. For example,

�̂i = �0 + �1�̂Si + �2�̂i + �i: (11)

As Tibaldi et al. (2003) stated, this model can then be employed to assess the trial-level
surrogacy, using the R2

trial (f ) associated with the model. The coe9cient is not calcu-
lated as in (7), but it rather just is the classical coe9cient of determination found by
regressing �̂i on �̂Si and �̂i.

If trial-speciNc intercept from the surrogate model (10) is not used, �1 is dropped
from (11) and an R2

trial (r) is obtained, similar in spirit to (9).

5.1.2. Center level only
In case we only consider the center level for the validation process, and analogous

to the previous case, the model can be rewritten as

Sijk = �Sij + �ijZijk + �Sijk ;

Tijk = �Tij + �ijZijk + �Tijk ; (12)

where now �Sij , �Tij , �ij, and �ij are center-speciNc intercepts and treatment e8ects. As
in the previous case, the models are Ntted separately and the errors are assumed to be
independent. At the second stage, a regression model similar to (11) is Ntted to the
treatment e8ects, obtained from the estimation at the Nrst stage:

�̂ij = �′
0 + �′

1�̂Sij + �′
2�̂ij + �ij: (13)

The model can be used to assess the center-level surrogacy, using the R2
center (f ) asso-

ciated with this regression. In case that center-speciNc intercept from surrogate model
is not used, a reduced R2

center (r) is obtained.
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5.2. Strategy II: three levels, =xed e;ects

We now include both trial as well as center e8ects in the Nrst-stage model, but they
are considered to be Nxed rather than random. The model then reads

Sijk = �Si + �Sij + (�i + �ij)Zijk + �Sijk ;

Tijk = �Ti + �Tij + (�i + �ij)Zijk + �Tijk ; (14)

where both errors (�Sijk ; �Tijk ) are to be dependent.
At the second stage, an appropriate set of regressions is Ntted to the treatment e8ects,

estimated at the Nrst stage:

�̂i = �0 + �1�̂Si + �2�̂i + �i; (15)

�̂ij = �′
0 + �′

1�̂Sij + �′
2�̂ij + �ij: (16)

Model (15) is used, when the trial-level association is of interest. Model (16) is used,
when the focus is on the association at the center level. Both regressions produce an
R2 measure of surrogacy.

5.3. Strategy III: three levels, random e;ects

Buyse et al. (2000) assumed the availability of individual-patient data and formulated
a two-stage model, with the joint distribution [T; S|Z] speciNed at the Nrst stage and the
joint distribution of the treatment e8ects [�; �] speciNed at the second stage. Shkedy
et al. (2003) employed this methodology and developed a Bayesian approach under
the assumption that individual data are available (see also Liao, 2002; Browne et al.,
2002). We will extend their methodology for model (1).

Generally, consider linear predictors for T and S:

E(Sijk |mSi ; mSij ; ai; aij) = �S + mSi + mSij + (� + ai + aij)Zijk ;

E(Tijk |mTi ; mTij ; bi; bij) = �T + mTi + mTij + (� + bi + bij)Zijk : (17)

The coe9cients mSi , mTi , ai, bi, mSij , mTij , aij, bij have a similar meaning as those in
model (1). Further, the vector of random e8ects associated to trial, (mSi ; mTi ; ai; bi)T,
is assumed to be zero-mean normally distributed with covariance matrix (2), while
the vector of random e8ects associated to center, (mSij ; mTij ; aij; bij)T, is assumed to be
zero-mean normally distributed with covariance matrix (3).

Shkedy et al. (2003) proposed to combine (17) and (2)–(3), deNning a hierarchical
Bayesian model. Thus, at the Nrst stage of the hierarchical model we specify the
following joint distribution of Tijk and Sijk :(

Sijk

Tijk

)
∼ N

((
�S + mSi + mSij + (� + ai + aij)Zijk

�T + mTi + mTij + (� + bi + bij)Zijk

)
; �

)
; (18)

where � is given by (4).
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At the second stage of the model the priors for the ‘Nxed’ e8ects are speciNed:

�S ∼ N(0; �2
�S

);

�T ∼ N(0; �2
�T

);

� ∼ N(0; �2
�);

� ∼ N(0; �2
�): (19)

For the precision parameters in (19) (Tat) hyperprior models can be speciNed using
Gamma distributions, e.g., �−2

�S
∼ gamma(0:001; 0:001), etc. As the hyperprior distri-

bution for the covariance matrices D, D′ and �, a Wishart distribution is assumed:

D−1 ∼ Wishart(RD); D′−1 ∼ Wishart(RD′); �−1 ∼ Wishart(R�): (20)

In order to assess the trial-level surrogacy, the coe9cient of determination deNned by
(7) will be used. The center-level surrogacy can be assessed using the coe9cient of
determination computed from (7) with matrix D′, given in (3), in place of matrix D.
Finally, to measure individual-level surrogacy, the coe9cient of determination given in
(8) can be used.

To avoid computational problems, Buyse et al. (2000) proposed a reduced model
in which the linear predictors of S and T do not include trial and center speciNc
intercepts. In the hierarchical model, the likelihood at the Nrst stage of the model can
be speciNed by omitting the trial speciNc random intercepts from (18). This leads to
the speciNcation(

Sij

Tij

)
∼ N

((
�S + (� + ai + aij)Zijk

�T + (� + bi + bij)Zijk

)
; �

)
: (21)

At the second stage of the model, the prior distribution the random e8ects, (ai; bi)T, is
assumed to be bivariate normal with mean 0 and covariance matrix Dr . Note that the
covariance matrix Dr is the 2×2 lower right submatrix in (2) and is assumed to follow
a Wishart distribution, D−1

r ∼ Wishart(RDr ). Other prior and hyperprior models remain
the same as in the full model. For the reduced model, the coe9cient of determination,
measuring the trial-level surrogacy, reduces to (9). Similar considerations can be made
for (aij; bij)T, which is assumed normal with zero mean and covariance matrix D′

r ,
which is the 2 × 2 right bottom sub matrix of D′ deNned in (3).

6. A simulation study

We studied the performance of the various strategies in terms of both point estima-
tion, as well as precision, of R2

trial (r) and of R2
center (r), by means of a simulation study.

A setting, similar to the one used in Buyse et al. (2000) is adopted.
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6.1. Simulation settings

6.1.1. Generating Mechanism I
In Mechanism I, data are generated using model (1) with (mSi ; mTi ; ai; bi) ∼ N(0; D)

and (mSij ; mTij ; aij; bij) ∼ N(0; D′), where

D = �2
T




1 0:8 0 0

0:8 1 0 0

0 0 1 �T

0 0 �T 1


 ; D′ = �2

C




1 0:8 0 0

0:8 1 0 0

0 0 1 �C

0 0 �C 1


 ; (22)

and �S = 50, �T = 45, � = 5, � = 3.
Further, the true R2, following from (7) and (22), is set equal to either 0:5 or 0:9

at the trial or at the center level. Thus, for both �2
T and �2

C , the values of 0.5 or 0.9
are considered. Parameters �2

T and �2
C are assigned values of 0.1 or 10. Regarding the

individual-level variability, (�Sij ; �Tij) ∼ N(0; �) with

� = �2

(
1 0:8

0:8 1

)
:

The parameter �2 equals either 0.1 or 3.
For every choice of values for �T , �C , �2

T , �2
C and �2, simulated datasets were

obtained assuming 5, 10, 20, or 100 trials, with 10 or 100 centers per trial and with
10 or 100 subjects per center. In total, 250 datasets were simulated for each setting.

6.1.2. Generating Mechanisms II and III
Further, a simulation was performed in which, instead of considering model (1) to

generate the data, we used a model in which we have random e8ects associated to
either trial or to center, but not to both of them.

The Nrst of these, termed Mechanism II and where only trial-level random e8ects
are considered, is given by

Sijk = �S + mSi + (� + ai)Zijk + �Sijk ;

Tijk = �T + mTi + (� + bi)Zijk + �Tijk : (23)

Alternatively, when only random-e8ects at the center level are present (Mechanism
III), (1) simpliNes to

Sijk = �S + mSij + (� + aij)Zijk + �Sijk ;

Tijk = �T + mTij + (� + bij)Zijk + �Tijk : (24)

The random vectors associated to trial and center were considered, as in Mechanism I,
to follow mean-zero normal distributions: (mSi ; mTi ; ai; bi) ∼ N(0; D), (mSij ; mTij ; aij; bij)
∼ N(0; D′).
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Fig. 1. Simulation study. The estimation of R2 and its precision for R2
trial (r) = R2

center (r) and �2
T = �2

C = 10.
Data were generated using Mechanism I. Left column: Strategy I (Two-level only); right column: Strategy
II (Three-levels, Nxed e8ects). Top row: estimation of R2 = 0:5; bottom row: estimation of R2 = 0:9.

A setting of simulation parameters similar to the one used for Mechanism I was
considered, i.e., 5, 10, 20 or 100 trials, with 10 or 100 centers and 10 or 100 subjects
per center; �2

T and �2
C equal to 10 or 0.1; �2 = 3 or 0.1; �2

T = 0:5 or 0.9 and �2
C = 0:5

or 0.9.

6.2. Simulation results, equal trial- and center-level association

6.2.1. Generating Mechanism I
The results of the simulations for Mechanism I, assuming �2

T = �2
C = 0:5 or 0.9,

�2
T =�2

C =10, and �2 =3 for 5, 10 or 20 trials with 10 centers per trial and 10 subjects
per center are shown in Fig. 1. Results for other settings of the parameters are similar.
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Fig. 1 shows the results obtained when Strategies I and II were used. In particular,
the use of Strategy I means, that the association at the trial level was evaluated using
a model without the center level (see (10) in Section 5.1.1), while the association at
the center level was assessed using a model without the trial level (see (12) in Section
5.1.2).

Fig. 1 indicates that both strategies give comparable results. It can be observed that
Strategy II has larger bias in the estimation than Strategy I. It is important to point
out that when �2

T = �2
C = 0:5, both methods tend to overestimate the strength of the

association, while if �2
T = �2

C = 0:9, the strategies underestimate it.

6.2.2. Generating Mechanisms II and III
When only one level of association is present in the data generating mechanism, we

can try to estimate the e8ects at this particular level using Strategy I, with either the
correct or the incorrect level included in the model. That is, if Mechanism II was used,
which involved only the trial-level association, we could try to capture this association
using center as the unit of analysis. A similar approach could be used for Mechanism
III, but in this case the center-level association could be evaluated using trial as the
unit of analysis. This would correspond to realistic situations where our interest lies
at another level than at which data are available from. For example, the Nrst scenario
(Mechanism II with center as the unit of analysis) is of practical interest when there
are too few trials available and, to assess the trial-level surrogacy, data for centers is
used instead. The results for 5, 10 or 20 trials with 10 centers per trial and 10 subjects
per center and �2

T =�2
C =0:5 or 0.9, �2

T =�2
C =10, �2 = 3 are shown in Fig. 2. Results

for other settings of the parameters are similar.
From Fig. 2, it can be seen that when the data were generated using Mechanism

II, the strategies proposed in Sections 5.1.1 and 5.1.2 led to very similar results. That
is, the estimated strength of the (trial-level) association was similar irrespectively of
whether trial (correctly) or center (incorrectly) was used as the unit of analysis. On the
other hand, when Mechanism III was used to generate the data, the method described
in Section 5.1.2 (i.e., using, correctly, center as the unit of analysis) performed much
better than the method of Section 5.1.1. To be precise, for the analysis based on centers
the estimates were closer to the true parameter. As in Section 6.2.1, when �2

T and �2
C

were equal to 0.5, Strategy I tended to overestimate the strength of the association,
while �2

T and �2
C were equal to 0.9, it was generally underestimated.

In addition, Strategy II was also applied to the simulated datasets. In this case, Nrst
three-level Nxed-e8ects model (14) was Ntted to the data, and then models (15) and
(16) were used to compute the determination coe9cients assessing the strength of
association at the trial and center level, respectively. The results for 5, 10 or 20 trials
with 10 centers per trial and 10 subjects per center and �2

T =�2
C =0:5 or �2

T =�2
C =0:9,

�2
T = �2

C = 10, �2 = 3 are shown in Fig. 3. Results for other settings of the parameters
are similar.

From Fig. 3 it is clear that, when Mechanism II was used, Strategy II with model
(15) at the second stage (based on trial-speciNc estimates) was giving satisfactory
results in terms of the bias of the estimation. On the other hand, for model (16),
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Fig. 2. Simulation study. The estimation of R2 and its precision for Strategy I (Two-level only) when
R2

trial (r) = R2
center (r) and �2

T = �2
C = 10. Left column: generating Mechanism II; right column: generation

Mechanism III. Top row: estimation of R2 = 0:5; bottom row: estimation of R2 = 0:9.

based on center-speciNc estimates, the results were poor. Fig. 3 also shows that when
Mechanism III was used to generate the data, Strategy II gave similar results in terms
of bias irrespectively of the model used at the second stage.

6.3. Simulation results, unequal trial- and center-level association

The results of simulations presented in Section 6.2 allow to conclude that both
Strategy I and Strategy II performed reasonably well when the association at the trial
and at the center levels were equal. In this section we present the case in which the
associations at both levels di8er.
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Fig. 3. Simulation study. The estimation of R2 and its precision for Strategy II (Three-levels, Nxed e8ects)
when R2

trial (r) =R2
center (r) and �2

T =�2
C =10. Left column: generating Mechanism II; right column: generating

Mechanism III. Top row: estimation of R2 = 0:5; bottom row: estimation of R2 = 0:9.

6.3.1. Performance of Strategies I and II
To further study the performance of Strategies I and II, we simulated data using

Mechanism I, with �2
T �= �2

C . In particular, we considered �2
T = 0:5 with �2

C = 0:9 and
�2
T =0:9 with �2

C =0:5. The values for the other parameters were similar to those used
for the simulations presented in Section 6.2.1. The results for 5, 10 or 20 trials with
10 centers per trial and 10 subjects per center and �2

T =�2
C =10 and �2 = 3 are shown

in Table 2.
In terms of bias, the results from Table 2 are reasonable for the estimation of the

trial-level association when Strategy I was applied (i.e., using trial as the unit of analysis
at both stages) and of the center-level association when Strategy II was applied (i.e.,



J.C. Abrahantes et al. / Computational Statistics & Data Analysis 47 (2004) 537–563 553

Table 2
Simulation study

�2
T �2

C No. of Modeling strategies
trials

Strategy I Strategy II

Trial as unita Center as unitb Trial as unita Center as unitb

0.5 0.9 5 0.521(0.309,0.317) 0.706(0.158,0.169) 0.623(0.296,0.301) 0.891(0.050,0.054)
0.5 0.9 10 0.528(0.220,0.226) 0.700(0.116,0.121) 0.676(0.182,0.183) 0.900(0.034,0.040)
0.5 0.9 20 0.540(0.147,0.151) 0.698(0.077,0.079) 0.681(0.122,0.121) 0.898(0.025,0.027)

0.9 0.5 5 0.830(0.179,0.186) 0.655(0.113,0.118) 0.663(0.268,0.273) 0.511(0.139,0.145)
0.9 0.5 10 0.851(0.098,0.099) 0.676(0.085,0.088) 0.685(0.190,0.196) 0.527(0.119,0.122)
0.9 0.5 20 0.856(0.064,0.065) 0.681(0.059,0.058) 0.686(0.123,0.124) 0.518(0.092,0.093)

Results for Strategies I and II for �2
T =�2

C =10, with 10 patients per center and 10 centers per trial. Mean
estimates of �2

T and �2
C with model-based and empirical standard errors (in parentheses).

aGives estimates of �2
T .

bGives estimates of �2
C .

Table 3
Simulation study

�2
T �2

C No. of Modeling strategies
trials

Strategy I Strategy II

Trial as unita Center as unitb Trial as unita Center as unitb

0.5 0.9 5 0.535(0.305,0.315) 0.537(0.294,0.312) 0.526(0.312,0.320) 0.819(0.075,0.079)
0.5 0.9 10 0.504(0.228,0.235) 0.516(0.220,0.231) 0.508(0.231,0.238) 0.822(0.060,0.062)
0.5 0.9 20 0.507(0.151,0.157) 0.519(0.145,0.153) 0.513(0.156,0.161) 0.822(0.044,0.045)

0.9 0.5 5 0.894(0.122,0.131) 0.880(0.123,0.134) 0.870(0.151,0.154) 0.722(0.109,0.111)
0.9 0.5 10 0.891(0.094,0.102) 0.884(0.087,0.092) 0.882(0.088,0.090) 0.730(0.087,0.089)
0.9 0.5 20 0.897(0.043,0.047) 0.890(0.042,0.046) 0.888(0.048,0.047) 0.731(0.068,0.070)

Results for Strategies I and II for �2
T = 10 and �2

C = 0:1 and 10 patients per center and 10 centers per
trial. Mean estimates of �2

T and �2
C with model-based and empirical standard errors (in parentheses).

aGives estimates of �2
T .

bGives estimates of �2
C .

a three-level Nxed-e8ects model at the Nrst stage with center-speciNc e8ects analyzed
at the second stage).

The above conclusions were drawn for the case when �2
T = �2

C = 10. It is also
of interest to study what would happen if �2

C were much smaller than �2
T . From a

practical point of view this situation is desirable, since a large variance for the center
level means existence of a strong center-speciNc treatment e8ect, what makes di9cult
to draw general conclusions. Table 3 presents results for Strategies I and II for the
case of �2

T = 10 and �2
C = 0:1.
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Table 3 indicates that, when the variability at the center level was much smaller
than at the trial level, the estimates obtained using either Strategy I or Strategy II for
the trial-level association were close to the true value of the parameter of interest.
On the other hand, for the center-level association, reasonable results were obtained
only for Strategy II when �2

C = 0:9. For other cases using center as the unit of the
analysis, either at both stages (Strategy I) or only at the second one (Strategy II),
was producing results that, on average, were close to the value of the coe9cient of
determination related to the trial-level association.

6.3.2. Insights in the performance of Strategy I
The bad performance of Strategy I, especially for the center level, can be explained

by the fact that ignoring a level can lead to overestimation of the variability at the
levels surrounding the level being ignored. To this aim, we will use the results obtained
by Hutchison and Healy (2001). For example, consider the following model:

Sijk = �S + mSi + mSij + (� + �i + �ij)Zijk + �Sijk :

It is similar to model (1), but it contains only three random e8ects: random intercepts
mSi and mSij associated to trial and center, respectively, and the random error �Sijk .
Assume that the data are balanced (Ni ≡ N; nij ≡ n) and the variances of the random
e8ects corresponding to the trial, center and individual level are equal to �2

T , �2
C and

�2, respectively. It can be then shown that the two variance components of the model
in which the center level is ignored are:

�̃2
T = �2

T +
n − 1
Nn − 1

�2
C ≈ �2

T +
1
N

�2
C; (25)

�̃2 = �2 +
n(N − 1)
Nn − 1

�2
C ≈ �2 +

N − 1
N

�2
C: (26)

Thus, they can be seen as the true variance, plus a certain fraction of the variance
of the random e8ect associated to the level that has been ignored. For this particular
case not much variability is added to the variance corresponding to the level above the
one ignored (trial), since most of the information is sent to the level below. This is
the reason why in Tables 2 and 3 the trial-level association is generally well estimated
when Strategy I is used. On the other hand, if the trial level is ignored, the center-level
variance becomes

�̃2
C = �2

C +
N (M − 1)
MN − 1

�2
T ≈ �2

C +
M − 1
M

�2
T : (27)

The individual-level variability remains unchanged. Thus, most of the variability con-
tained in the trial level is sent to the center level, which a8ects the estimation of the
association at the center level. This is the reason why in Tables 2 and 3 the center-level
association is poorly estimated when Strategy I is used.

6.3.3. Performance of strategy II in a large dataset
In order to further explore the behavior of Strategy II observed in Tables 2 and

3, an additional simulation was conducted. Table 4 shows results for several di8erent
combinations of the values of parameters �2

T , �2
C , �2, �2

T , and �2
C , for 100 trials with
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Table 4
Simulation study

�2
T �2

C �2 �2
T �2

C Trial as unita Center as unitb

10 10 3 0.5 0.9 0.685(0.030,0.033) 0.900(0.004,0.009)
10 10 3 0.9 0.5 0.684(0.031,0.035) 0.501(0.014,0.021)

10 10 0.1 0.5 0.9 0.685(0.030,0.033) 0.900(0.004,0.009)
10 10 0.1 0.9 0.5 0.683(0.031,0.035) 0.499(0.014,0.020)

10 0.1 3 0.5 0.9 0.508(0.028,0.030) 0.877(0.010,0.012)
10 0.1 3 0.9 0.5 0.896(0.010,0.013) 0.565(0.024,0.027)

10 0.1 0.1 0.5 0.9 0.506(0.028,0.031) 0.899(0.005,0.007)
10 0.1 0.1 0.9 0.5 0.896(0.010,0.013) 0.503(0.015,0.017)

0.1 0.1 0.1 0.5 0.9 0.686(0.030,0.032) 0.899(0.005,0.008)
0.1 0.1 0.1 0.9 0.5 0.684(0.031,0.033) 0.503(0.015,0.0017)

Results for Strategy II for di8erent values of variance components associated to trial and center random
e8ects, with 100 subjects per center, 100 centers per trial and 100 trials. Mean estimates of �2

T and �2
C with

model-based and empirical standard errors (in parentheses).
aGives estimates of �2

T .
bGives estimates of �2

C .

100 centers per trial and 100 subjects per center. The idea is to investigate the behavior
of the strategy in a large dataset.

Results presented in Table 4 indicate that, the center-level association was in general
estimated reasonably well. It is worth noting that the bias, observed in Table 3 for the
combination of �2

T =0:9 and �2
C =0:5, was greatly reduced when �2 =3, and essentially

disappeared when �2=0:1. This suggests that, for Strategy II, the bias in the estimation
of the center-level surrogacy may be negligible as long as the variability at the level
of center is at least as large as the variability at the lower (individual) level.

On the other hand, from Table 4 one can see that, when the variability at the trial
and center level was of the same magnitude, the trial-level association was estimated
poorly, even though the sizes of the units were large. The bias generally disappeared
when the variability at the center level became much smaller than that at the level of
trial. This suggests that, as for the center-level association, bias in the assessment of
the trial-level association for Strategy II may be negligible as long as the variability at
the lower (center) level is smaller.

6.3.4. Comparison of strategies II and III
Finally, we attempted to compare Strategy II with Strategy III. Since using a

maximum-likelihood approach to implement Strategy III was numerically too complex,
we considered the use of a Bayesian approach. Unfortunately, performing an extensive
simulation using the latter approach turned out to be too time-consuming. Therefore,
the simulation study was limited to the random generation of only one dataset for
di8erent parameter settings, and the comparison of the results obtained for Strategy II
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Table 5
Simulation study

�C No. of trials �2
T �2

C R2 Actual value Strategy II Strategy III

Mean StDev Median

10 5 0.5 0.9 R2
trail 0.750 0.840 0.653 0.2420 0.7127

10 5 0.5 0.9 R2
center 0.927 0.914 0.934 0.0210 0.9381

10 5 0.9 0.5 R2
trail 0.916 0.822 0.917 0.0856 0.9430

10 5 0.9 0.5 R2
center 0.443 0.539 0.497 0.1079 0.5012

10 10 0.5 0.9 R2
trail 0.263 0.501 0.260 0.2128 0.2234

10 10 0.5 0.9 R2
center 0.930 0.951 0.929 0.0154 0.9311

10 10 0.9 0.5 R2
trail 0.872 0.725 0.826 0.1207 0.8572

10 10 0.9 0.5 R2
center 0.431 0.454 0.399 0.0837 0.3999

10 20 0.5 0.9 R2
trail 0.358 0.719 0.425 0.1697 0.4329

10 20 0.5 0.9 R2
center 0.912 0.938 0.901 0.0153 0.9018

10 20 0.9 0.5 R2
trail 0.915 0.747 0.894 0.0667 0.9109

10 20 0.9 0.5 R2
center 0.502 0.557 0.524 0.0532 0.5250

0.1 5 0.5 0.9 R2
trail 0.777 0.760 0.777 0.1871 0.8355

0.1 5 0.5 0.9 R2
center 0.914 0.810 0.907 0.1112 0.9482

0.1 5 0.9 0.5 R2
trail 0.941 0.948 0.960 0.0504 0.9751

0.1 5 0.9 0.5 R2
center 0.533 0.635 0.534 0.1889 0.5572

0.1 10 0.5 0.9 R2
trail 0.444 0.421 0.447 0.2169 0.4628

0.1 10 0.5 0.9 R2
center 0.932 0.760 0.892 0.1082 0.9265

0.1 10 0.9 0.5 R2
trail 0.795 0.776 0.792 0.1276 0.8217

0.1 10 0.9 0.5 R2
center 0.488 0.551 0.494 0.1513 0.5054

0.1 20 0.5 0.9 R2
trail 0.292 0.288 0.311 0.1652 0.3063

0.1 20 0.5 0.9 R2
center 0.915 0.819 0.951 0.0468 0.9668

0.1 20 0.9 0.5 R2
trail 0.950 0.933 0.952 0.0250 0.9574

0.1 20 0.9 0.5 R2
center 0.466 0.691 0.465 0.1325 0.4698

Results for Strategy II and Strategy III for a simulated sets of data with 10 subjects per center and 10
centers per trial and �T =10 (Mean=posterior mean; StDev=posterior standard deviation; Median=posterior
median).

and Strategy III to the true values of the parameters used for simulations. The results
are shown in Table 5.

By comparing the estimates of the coe9cients of determination to their actual values
(i.e., the values computed from the actual, simulated random e8ects) in Table 5 we
can observe that, when the variability at the center and trial level was of the same
magnitude, Strategy II did not estimate the trial-level association well, in contrary to
Strategy III. Even when the variability at the center level was smaller than that at
the level of trial, estimates obtained for Strategy III were closer to the actual values
than the estimates produced by Strategy II. One can conclude, admittedly based on
the anecdotal evidence obtained by generating a single dataset under each setting, that
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Strategy III gives better results, which is reasonable if we take into account that the
other two strategies are ignoring levels and are using Nxed e8ects as representation of
random e8ects.

7. Analysis of case studies

7.1. Studies in schizophrenia

In the Nrst psychiatric study, several options were studied considering the units
available. The Nrst row in Table 6 shows the results obtained when Strategy I was
applied. That is, the coe9cient of determination associated to a particular level was
estimated using a (two-stage) model including only this level and individual variability.
We observe that, in general, there is relatively little di8erence between the estimates
obtained.

Strategy II, using a Nxed-e8ects model with all three levels included at the Nrst
stage, was Ntted as well. In this model the estimate of the magnitude of the association
at the highest level (country) is close to that obtained using Strategy I. For the other
two levels more substantial di8erences can be observed.

Finally, a random-e8ects (Strategy III) analysis, based on the Bayesian approach,
was performed. The results are shown in the last row of Table 6. One can see that
the estimates of the magnitude of the association for the two highest levels (main
investigator and country) are lower than those obtained for the two other strategies. As
for Strategy I, there is relatively little di8erence in the estimates obtained for di8erent
levels.

Let us turn attention to the second psychiatric case study, where data from an equiv-
alence trial are used. The result for the investigator level (R2 = 0:70, bootstrap-based
95% C.I. [0:44; 0:96]), obtained using Strategy I, is within the range of the estimates
observed for the Nrst study (see Table 6). This observation supports the claim that
might have been able to reasonably accurately quantify the surrogacy of PANSS for
CGI in the context of certain compounds for schizophrenia. Of course, the R2 values are
not terribly high, so that a mere replacement of CGI by PANSS may be questionable.

Table 6
R2 values (with 95% conNdence/credible intervals) at di8erent levels for the Nrst psychiatric study, using
di8erent modelling strategies

Unit of analysis

Investigator Main investigator Country
(138 units) (29 units) (19 units)

Strategy I 0:56[0:43; 0:68]a 0:69[0:41; 0:86]a 0:62[0:25; 0:88]a

Strategy II 0:42[0:30; 0:55]a 0:77[0:49; 0:89]a 0:56[0:15; 0:86]a

Strategy III 0:52[0:24; 0:74]b 0:66[0:31; 0:88]b 0:51[0:11; 0:83]b

aBootstrap conNdence interval.
bCredible set.
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7.2. Belgian Health Interview Survey

We focus on log-transformed body mass index (BMI) as a normally distributed out-
come. In an attempt to Nnd a parsimonious model for these data, the following covari-
ates were examined: sex, age (eight categories), education (Nve categories), household
income (5 categories), and smoking behavior. Note that the question about smoking
behavior was addressed only to persons aged 15 or more, thus reducing the e8ective
sample size from 10,221 to 8560. In addition to the aforementioned covariates, infor-
mation about the sample design can be taken into consideration, such as: stratiNcation
variables (quarter and provinces); size variables (province, municipality, household);
number of groups to be interviewed within a municipality; and interviewee status (in-
dicating whether he/she is the reference person or his/her partner).

Due to unit- and item non-response, 7422 out of 8560 (87%) observations were
available with complete information on the selected covariates and BMI. For illustra-
tion purpose the analysis will be restricted to the province of Limburg, where 324
observations were available for the modelling procedure. The following model was
Ntted to the data:

yijk = xT
ijk� + ai + aij + �ijk ; (28)

with yijk being the log of BMI for subject k in household j from municipality i, ai ∼
N(0; �2

MUN), aij ∼ N(0; �2
HH), and �ijk ∼ N(0; �2). Thus, the total variation in (log) BMI

can be decomposed into that between individuals within each household (�2), that be-
tween households within municipalities (�2

HH), and that between municipalities (�2
MUN).

Among covariates listed above, only sex, age, education, and smoking behavior were
found to have a signiNcant e8ect and were included in the model. Second-order inter-
action terms of sex with age and smoking behavior, education with smoking behavior
and age, and smoking behavior with age were also included. Among sampling-related
variables, only interviewee status was retained.

The variance components �2
MUN, �2

HH, and �2 can be interpreted in terms of intra-unit
correlation. Thus, the apparent intra-municipality correlation is deNned as

�MUN =
�2

MUN

�2
MUN + �2

HH + �2
; (29)

while the intra-household correlation is equal to

�HH =
�2

MUN + �2
HH

�2
MUN + �2

HH + �2
: (30)

The intra-unit correlation reTects the proportion of the total variability in the outcome
variable that is attributable to the clustering e8ect at a certain level and, as such, is a
measure of within-group homogeneity.

Table 7 shows the estimated variance and intra-class correlation coe9cients associ-
ated with the household and municipality levels, obtained for model (28) Ntted to the
data using di8erent modelling approaches.
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Table 7
Belgian Health Interview Survey

Strategies Endpoint

Fixed Random Bayesian

Ignoring �̂2
HH 0.0225(0.0030)a 0.0036(0.0014)b 0.0037(0.0019)d

municipality �̂2 0.0156(0.0014)a 0.0131(0.0014)b 0.0167(0.0020)d

level �̂HH 0.5905(NA) 0.2156(0.0775)c 0.1821(0.0854)d

Ignoring �̂2
MUN 0.0011(0.0003)a 0.0003(0.0004)b 0.0009(0.0010)d

household �̂2 0.0189(0.0015)a 0.0164(0.0013)b 0.0198(0.0017)d

level �̂MUN 0.0550(NA) 0.0199(0.0248)c 0.0409(0.0396)d

�̂2
MUN 0.0385(0.0187)a 0.0001(0.0004)b 0.0007(0.0009)d

Considering �̂2
HH 0.0535(0.0070)a 0.0035(0.0015)b 0.0033(0.0018)d

both �̂2 0.0156(0.0015)a 0.0131(0.0014)b 0.0168(0.0020)d

levels �̂MUN 0.3578(NA) 0.0052(0.0221)c 0.0348(0.0361)d

�̂HH 0.8550(NA) 0.2162(0.0778)c 0.1913(0.0858)d

Multilevel linear regression model on log(BMI). Estimated variance for the random e8ects for di8erent
modelling strategies.

aStandard errors were calculated using bootstrap.
bLikelihood-based standard errors.
cStandard errors were calculated using the delta method.
dPosterior standard errors.

We will Nrst concentrate on the Nxed-e8ects approach, i.e., treating random-e8ects
as Nxed. The variance component corresponding to the random e8ects at a particular
level is computed as the sample variance of the estimated Nxed-e8ects at that level.
The results obtained for models with one of the levels ignored show a strong dis-
agreement with those obtained for the model with both levels included. For example,
the intra-household correlation is estimated to equal 0.855 and 0.590 when municipal-
ity level is excluded or included (in addition to the household level) in the model,
respectively. Clearly, such a di8erence can lead to completely di8erent conclusions.

For a likelihood-based random-e8ects model estimation approach (such as, for ex-
ample, the one implemented in the SAS procedure MIXED), the estimated variance
components are smaller (column “Random” in Table 7). No big di8erences are ob-
served in the estimated intra-municipality and intra-household correlation when both
levels are included or when one of them is ignored.

Using reasoning similar to the one leading to Eqs. (25)–(26), one can show that
if we ignore the household level, the municipality and the residual variances for a
balanced design become:

�̃2
MUN = �2

MUN +
N − 1

NHHN − 1
�2

HH;

�̃2 = �2 +
N (NHH − 1)
NHHN − 1

�2
HH;

where N is the number of subjects per household and NHH is the number of households.
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If we now replace �2
MUN by �̃2

MUN and �2 by �̃2 in (29), the intra-municipality
correlation becomes

�̃MUN =
�2

MUN + N−1
NHHN−1 �2

HH

�2
MUN + N−1

NHHN−1 �2
HH + �2 + N (NHH−1)

NHHN−1 �2
HH

=
�2

MUN + N−1
NHHN−1 �2

HH

�2
MUN + �2

HH + �2
:

This result indicates that if N ¿ 1, the resulting intra-municipality correlation will be
larger than the true one. This is exactly what we observe: the intra-municipality cor-
relation is bigger in the case where we ignore the household level.

The same can be done for the model in which municipality is ignored. In this case
the residual variance remains the same, but the household variance becomes equal to

�̃2
HH = �2

HH +
NHH(NMUN − 1)
NMUNNHH − 1

�2
MUN; (31)

where NMUN is the number of municipalities.

Fig. 4. Belgian Health Interview Survey. Density function for variance components for the full model (solid
line) and for models when one of the levels is ignored (dashed line). Left column: household level was
ignored; right column: municipality level was ignored.
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Fig. 5. Belgian Health Interview Survey. Density function for correlation coe9cients for the full model (solid
line) and for models one of the levels ignored (dash line). Upper panel: household level was ignored; Lower
panel: municipality level was ignored.

If we replace �2
HH by �̃2

HH in (30), we get

�̃HH =
NHH(NMUN−1)
NMUNNHH−1 �2

MUN + �2
HH

NHH(NMUN−1)
NMUNNHH−1 �2

MUN + �2
HH + �2

=

(
1 + NMUN−1+N−1

HH

NMUN−N−1
HH

)
�2

MUN + �2
HH(

1 + NMUN−1+N−1
HH

NMUN−N−1
HH

)
�2

MUN + �2
HH + �2

:

It follows that

�̃HH ¡
�2

MUN + �2
HH

�2
MUN + �2

HH + �2
:

Again, this is in accordance with our observation: the intra-household correlation is
smaller when municipality is ignored. In our application the di8erence is negligible,
though, due to the fact that the variability at the municipality level is very small.

Finally, similar results for the intra-class correlation coe9cients can be observed for
the random-e8ects Bayesian approach (column “Bayesian” in Table 7). In this case
the results can be illustrated using the (posterior) density functions of the estimated
variance components. From Fig. 4, we can observe that, in general, when a level is
ignored the densities are shifted to the right, except for the case of the residual variance
when municipality was ignored. When the household level is ignored the shift to the
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right is bigger, and it is due to the fact that the household variance is six times larger
than the municipality variance. In Fig. 5 the (posterior) densities for the correlations are
plotted. It can be seen that there is almost no impact of the exclusion of a level in the
estimation model on the density functions. This is due to the fact that the municipality
variance is six times smaller than the household variation.

8. Concluding remarks

In this paper, we have investigated several strategies to deal with hierarchical linear
models. We have been interested primarily in the estimation of the strength of the
association between random e8ects at di8erent levels. This interest has been motivated
in the context of validating surrogate markers.

Three di8erent strategies have been considered in the paper: (1) applying Nxed-e8ects
models with only the trial level or the center level used in the validation process
(Strategy I); (2) including both levels in a Nxed-e8ects model at the Nrst stage (Strategy
II); and (3) including both levels in a random-e8ects model at the Nrst stage (Strategy
III). The strategies di8er in the complexity of the models. Consequently, they also
di8er in the ease of their practical implementation.

In general terms, the results indicate that the performance of the strategies depends
on the sample sizes, as well as on the variablity present at di8erent levels. The latter
dependence, especially for Strategy I, can be explained using theoretical results on the
e8ect of ignoring levels when Ntting multi-level models presented in a recent article
by Hutchison and Healy (2001).

In particular, from the conducted simulations we could conclude that, when data were
generated according to a model with random e8ects present at both levels, and when
the strength of association between the random e8ects was the same at both levels, all
the strategies produced reasonable results. When the association was di8erent, Strategy
I, with trials as the units of analysis, produced satisfactory estimates of the trial-level
association. On the other hand, using centers as the units of analysis resulted in biased
estimates of the center-level association. The estimates were, in fact, close to the true
value of the measure of the strength of the trial-level association, when the variability
of center-speciNc random e8ects was smaller than the variability of trial-speciNc e8ects.
This observation gives some justiNcation to the use of, e.g., centers instead of trials
as the units of analysis in practical applications of the meta-analytic approach to the
validation of surrogate endpoints.

On the other hand, to obtain plausible estimates of the strength of the association at
a particular level for Strategy II, the variability at the level below the one of interest
had to be smaller.

A limited investigation of the performance of Strategy III suggested that it was
able to correctly identify di8erent sources of variability and association. The estimates
obtained under Strategy III were closer to the actual values than, e.g., those for Strategy
II. In view of the structure of the model used in Strategy III, these conclusions were
not surprising. However, an important problem associated with the practical use of this
strategy is its numerical complexity. From this point of view, a possibility to use, e.g.,
Strategy I might be very advantageous.
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