Introduction, theoretical approach. A biomechanical analysis of cycling can be realized theoretically with a closed kinematic chain [1], consisting of elements of the rider, and elements of the bicycle on either side (Figure 1). These elements are: 1) Frame, 2) Crank, 3) Pedal & Foot, 4) Lower leg, 5) Upper leg, 6) Pelvis. On the frame’s saddle, the pelvis is supposed to move rotation-wise only [2]. The mobility of the chain is then calculated by applying Grübler’s equation for planar linkages [3], resulting in a total of 3 degrees of freedom (DOF). In motion, this closed kinematic chain is thus controlled and stabilized by 3 sets of antagonistic muscle groups, namely extensors and flexors of hip, knee, and ankle respectively.

Figure 1. Bicycle and rider represented as a closed kinematic chain (after [2]).

Practical approach. A practical and more realistic biomechanical analysis, however, reveals various other important features of road cycling, starting from the following. “For a racing bike traveling fast, about 80 percent of the work the cyclist does will go in overcoming air resistance” [4]. Therefore road cyclists do prefer to use a so-called...
aerodynamic position (Figure 2). Their “aero position” inevitably implies an anterior tilt of 15°-20° of their pelvis (Figure 2, red line) [5].

Figure 2. Anterior pelvic tilt (red line) in aerodynamic position (after [5]).

Material and methods. Based on [6], an anterior pelvic tilt of 20° was simulated by means of osteology of the pelvis, starting from its neutral position. The results of it, amore posterior position of the *tuber ischiadicum*, and a more anterior position of *spina iliaca anterior inferior*, were taken into account. Resulting changes of lengths of those muscles that have their anatomical origins on these bony landmarkswere then observed, using the pictures of [6]. These muscles are: the hamstrings and one part of the quadricepsfemoris, namely *rectusfemoris* muscle. This muscle and the hamstrings are most active during a pedal stroke [7].

Observational results. In the optimal aerodynamic position, 20° anterior pelvic tilt results in 7,5 % increase of the lengths of hamstrings *biceps femoris (long head)* and *seminembranosus*, and 6 % decrease of the length of quadriceps muscle part *rectusfemoris*.

Results and Conclusion. The observed increases and decreases of lengths of these muscles in aero position may lead to respectively hamstrings passive insufficiency, and *rectusfemoris* muscle active insufficiency, as these muscles are now likely to shift away from their plateau region of optimal force (= 100 %) [8].

Discussion. Such imminent muscle insufficiencies are reflected in “thigh injuries” “quadriceps and hamstring strains”, as described in cyclists [9]. Using a “gravity seat” possibly neutralizes some anterior pelvic tilt [10]. To restore optimal muscle force however, Electro Vibro Stimulation (EVS) is strongly recommended [11].

Acknowledgements. The authors thank Peter Gijsel, Nikolaas Van Riet, Ellen van den Goor, Tim De Jonghe, Riekje van Osnabrugge, Jan Krol, Jana De Brandt, and Bart Billiet for their stimulating interest during the preparation of this paper.
References


5. Steve C. (s.d.) Perfect Bike Fit, Figure 2, Effects of hip rotation on lower back and aerodynamic positioning, Hips tilted forward approximately 15°. URL: http://www.tri-ecoach.com/art11.htm Accessed October 30, 2016.


