A Discrete Choice Approach to define Individual Parking Choice Behaviour for PARKAGENT Model

A. Khaliq, P. van der Wearden, D. Janssens

IMOBI

Universiteit Hasselt, Belgium
Contents

- Introduction
- Modelling parking behavior with agent based models
- Car drivers’ parking behaviour in PARKAGENT
 - Rules of agent behaviour
 - Agents’ decision to park
 - Concept of on-street parking choice process
- Extension of agents’ on-street parking choice behaviour in PARKAGENT
 - Identification of factors affecting on-street parking choice
 - Model estimation
- Conclusions
Introduction

Urban Mobility Plans

Sustainable Urban Transport System

Accessibility
Quality of Urban Environment

Forecasting tools

Agent-based Models

Assessment of the future situation and support in making well informed decisions
Modelling Parking Behavior with Agent Based Models

1. **PARKAGENT** (Benenson et al., 2008)
 \[P_{\text{unoc}} = \frac{N_{\text{unoc}}}{N_{\text{unoc}} + N_{\text{occ}}} \times \text{Distance To Destination/Length Of Parking Place} \]

2. **SUSTAPARK** (Dieussaert et al., 2009)
 \[U_{\text{on-street (free)}} = \exp(\bar{d}_1 \cdot \text{At} + \bar{d}_2 \cdot \text{St} + \bar{d}_3 \cdot \text{Et} + \bar{d}_4 \cdot \text{Fee}) \]

3. **MATsim model** (Waraich and Axhausen, 2012)
 \[U_{\text{parking},i} = U_{\text{Pcost},i} + U_{\text{PssearchTime},i} + U_{\text{Pwalk},i} + \epsilon_i \]

To propose a behavioural model of parking choice that improves the representation of parking choice process in PARKAGENT model.
Car drivers’ parking behavior in PARKAGENT

1. Driving towards the destination.
2. Searching for parking.
3. After passing the destination
4. Staying at the found parking place.
5. Leaving the parking place

Start

Preceive parking on-street

Continue search

Decide to park

Maximum parking time expired?

Occupy parking space for duration D

Leave

End
The agents’ decision to park is based on expected free parking spaces between the current location and the destination.

Expected free parking spaces = Probability of getting free parking place * distance to destination/length of parking place.

Probability of getting free space = Number of free parking spaces/Total number of parking spaces

- $F_{exp} < 1$ (parks)
- $F_{exp} > 3$ (continue driving)
On-street parking choice behaviour

The decision of an individual to park on-street depends on the utility maximization (\(U_i \))
Extension of agents’ on-street parking choice behaviour in PARKAGENT

The decision of an agent to park at a parking place should consider factors associated with street (e.g. occupancy, cost, security, etc.) and personal characteristics (e.g. age, gender, income, etc.).

\[U_i = \beta_0 + \sum_{k=1}^{k} \alpha_{ik} (X_{ik}) + \sum_{k=1}^{k} \beta_{ik} (Y_{ik}) + \epsilon_i. \]

Where,
- \(\beta_0 \) = alternative-specific constant
- \(\alpha_i \) = weight (or parameter) associated with personal attributes \(X_1, ..., X_k \) of individual \(i \)
- \(\beta_i \) = weight (or parameter) associated with street attributes \(Y_1, ..., Y_k \) available to an individual \(i \)
- \(X_i \) = personal attributes of the individual \(i \)
- \(Y_i \) = street characteristics available to individual \(i \)
Extension of agents’ on-street parking choice behaviour in PARKAGENT

- Identification of attributes and attribute levels
- Stated preference questionnaire survey (Online questionnaire)
- Data collection (1096 respondents)
- Analysis (Multinominal logit model using SPSS)
Identification of factors affecting on-street parking choice

<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>Attributes</th>
<th>Description</th>
<th>Attribute level</th>
</tr>
</thead>
</table>
| 1. | Parking costs per hour | The price that the driver has to pay for parking its car usually defined on hourly basis. | 1. 1 euro/hour
 | | 2. 2 euro/hour | 3. free | | | |
| 2. | Distance to destination | The distance of the street where car is parked from the destination. | 1. 100m | 2. 200m | 3. 300m |
| 3. | Occupancy rate | The number of cars parked in a street (expressed as percentage) | 1. Low, occupancy, 50% | 2. Medium occupancy, 75% | 3. High occupancy, 100% |
Multinomial Logit Model Estimates

<table>
<thead>
<tr>
<th>Street Attributes</th>
<th>Part-worth utilities</th>
<th>Significance level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over all utility (intercept)</td>
<td>1.505</td>
<td>0.000*</td>
</tr>
<tr>
<td>Parking cost (1 euro/hour)</td>
<td>-0.867</td>
<td>0.000*</td>
</tr>
<tr>
<td>Distance to destination (100m)</td>
<td>-0.322</td>
<td>0.089***</td>
</tr>
<tr>
<td>Occupancy (Low occupancy, 50%)</td>
<td>-0.431</td>
<td>0.010**</td>
</tr>
<tr>
<td>Available security (Guards)</td>
<td>0.280</td>
<td>0.042**</td>
</tr>
</tbody>
</table>

(* *** **** indicate significance at 1%, 5% and 10% level).

- Part-worth utilities of parking cost, distance to destination, occupancy and security are in the expected direction, giving face validity to the estimated model.
- The model fitting information ($p = 0.000$) indicates that the overall model is statistically significant.
Conclusions

- Car drivers’ decision to park in a street also depends on the **prevailing parking situation of street**.

- PARKAGENT is used as a parking policy evaluation tool, it is important to include **street related factors** when analysing the effects of suggested parking measures.

- Literature on parking choice does not provide insights regarding the influence of **factors representing the parking situation** such as occupancy, availability of security, parking duration, surrounding activities etc. on car drivers’ preferences.

- This behavioural modelling approach will **enhance the simulating capability of PARKAGENT model** by representing the parking choice decision of agents in a **more realistic way**.

- The next step in this research is to **perform simulations to measure the predictive capability** of the extended PARKAGENT model.
THANK YOU