INTRODUCING SPAAC AND SPIEDAC COUPLING CHEMISTRY INTO THE VCAM-1 TARGETING NANOBODY FOR ADVANCED MEDICAL BIOMATERIALS

Rebekka Hansen 1, Peter Adriaensens 1,2, Wanda Guedens 1

1 Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Agoralaan 1 – Building D, 3590 Diepenbeek, Belgium
2 Applied and Analytical Chemistry, Institute for Materials Research (IMO), Hasselt University, Agoralaan 1 – Building D, 3590 Diepenbeek, Belgium

The goal of this project is to site-specifically functionalize nanobodies with a copper-free ‘click’ functionality, to allow an oriented and covalent coupling to a complementary functionalized surface. A methodology is proposed in which an unnatural amino acid is introduced in the protein structure, with applications towards biosensor chips and affinity-based chromatography.

Expanding the genetic repertoire of E. Coli with copper-free ‘click’ chemistry

Norbornene functionalized anti-VCAM1 Nanobodies

The E. coli cell lysate was incubated with a fluorescent dye containing a ‘click’ functional group (tetrazine-5-FAM). The Nanobodies with a norbornene functionality conjugated with the dye, resulting in two bands on the SDS-PAGE. The conjugated Nanobodies were visualised under fluorescent light.

Optimisation amber codon location

The location of the amber stop codon has an influence on the efficacy of the amber suppression. Therefore, different constructs were made to optimize the yield of modified nanobodies.

Expression conditions in Top10F’ were similar to above. 1 mM final volume of (I) was added. The cell lysate was analysed with SDS and Western Blot targeting the C-terminal His-tag.

The anti-VCAM1 gene was ligated into the pBAD vector. The TAG codon was inserted between the Nb gene and a C-terminal His-tag.

The mutations were made with megaprimer PCR. The constructs will be tested in expression experiments.

Acknowledgements Prof. dr. Serge Muyldermans (VUB, Belgium) for kindly providing the vector pHEN6(c):pelB-NB-VCAM1His Jr. Dr. Edward Lemke (EMBL Heidelberg) for providing the vector pEVOL:PyrRS_wt and pBAD:GFP-39TAG. Interuniversity Attraction Poles Programme (P7/05) initiated by the Belgian Science Policy Office (BELSPO) for financial support.

rebekka.hansen@uhasselt.be

Institute for Materials Research
Universiteit Hasselt | Campus Diepenbeek
Agoralaan Bld. D | B-3590 Diepenbeek

Tel: +3211268300