GTFS Bus Stop Mapping to the OSM Network
Introduction
Why bus stop mapping?
Introduction

- Public transport
- Microscopic simulations
- Data requirement
- Difficulties
- New fully automated technique
Data preparation

What do we need?
Data preparation

- GTFS & OSM
Data preparation

- GTFS
 - Optional shapefile

Israel, Kiryat Gat
Data preparation

- GTFS & OSM
 - Convert OSM into a directed network graph
 - Find for each bus stop specified in GTFS a set of candidate network links to attach it
Algorithm

How does it work?
Algorithm 4.1 Determination of optimal assignment of projected stops S_p to GTFS stops S_G.

1: $S_p \leftarrow \text{projStops}(S_G)$
2: $\text{fixTrivial}(S_G)$
3: $\langle G_G, G_P \rangle \leftarrow \text{graphFromBusStopSequences}()$
4: repeat
5: \hspace{1em} $\text{removedAtLeastOneCandidate} \leftarrow \text{false}$
6: \hspace{1em} $\text{handleTriples}(\langle G_G, G_P \rangle)$
7: \hspace{1em} $\text{handleNonBifurcatingMaximalSequences}(\langle G_G, G_P \rangle)$
8: \hspace{1em} $\text{handleStars}(\langle G_G, G_P \rangle)$
9: \hspace{1em} $\text{reduceCycleBreakers}(\langle G_G, G_P \rangle)$
10: until $\neg \text{removedAtLeastOneCandidate}$
11: $\text{components} \leftarrow \text{decompose}(\langle G_G, G_P \rangle)$
12: for all $c \in \text{components}$ do
13: \hspace{1em} $\text{assign}(c)$
14: end for

- Assign GTFS stops having a single projection
- Introduces cycleBreakers
- Vertex in the middle has $\text{inDegree} = \text{outDegree} = 1$
- Internal vertices have $\text{inDegree} = \text{outDegree} = 1$
- Removes cycleBreakers that became redundant by fixing some vertices
- Either by explicit discarding or as a consequence of fixing
- Assignment by solution enumeration
Trips
Algorithm 4.1 Determination of optimal assignment of projected stops S_p to GTFS stops S_G.

1: $S_p \leftarrow \text{projStops}(S_G)$
2: $\text{fixTrivial}(S_G)$ ▷ Assign GTFS stops having a single projection
3: $\langle G_G, G_P \rangle \leftarrow \text{graphFromBusStopSequences}()$ ▷ Introduces cycleBreakers
4: repeat
5: $\text{removedAtLeastOneCandidate} \leftarrow \text{false}$ ▷ Vertex in the middle has $\text{inDegree} = \text{outDegree} = 1$
6: $\text{handleTriples}(\langle G_G, G_P \rangle)$ ▷ Internal vertices have $\text{inDegree} = \text{outDegree} = 1$
7: $\text{handleNonBifurcatingMaximalSequences}(\langle G_G, G_P \rangle)$ ▷ Removes cycleBreakers that became redundant by fixing some vertices
8: $\text{handleStars}(\langle G_G, G_P \rangle)$ ▷ Either by explicit discarding or as a consequence of fixing
9: $\text{reduceCycleBreakers}(\langle G_G, G_P \rangle)$
10: until $\neg \text{removedAtLeastOneCandidate}$
11: $\text{components} \leftarrow \text{decompose}(\langle G_G, G_P \rangle)$ ▷ Assignment by solution enumeration
12: for all $c \in \text{components}$ do
13: $\text{assign}(c)$
14: end for
GTFS graph
Algorithm 4.1 Determination of optimal assignment of projected stops S_P to GTFS stops S_G.

1: $S_P \leftarrow \text{projStops}(S_G)$
2: $\text{fixTrivial}(S_G)$
3: $(G_G, G_P) \leftarrow \text{graphFromBusStopSequences}()$
4: repeat
5: \hspace{1em} removedAtLeastOneCandidate \leftarrow \text{false}
6: \hspace{1em} \text{handleTriples}((G_G, G_P))
7: \hspace{1em} \text{handleNonBifurcatingMaximalSequences}((G_G, G_P))
8: \hspace{1em} \text{handleStars}((G_G, G_P))
9: \hspace{1em} \text{reduceCycleBreakers}((G_G, G_P))
10: until \neg \text{removedAtLeastOneCandidate}
11: components \leftarrow \text{decompose}((G_G, G_P))
12: \text{for all } c \in \text{components} do
13: \hspace{1em} assign(c)
14: \text{end for}
- Example of a cycle breakers
Algorithm 4.1 Determination of optimal assignment of projected stops S_p to GTFS stops S_G.

1: $S_p \leftarrow \text{projStops}(S_G)$
2: $\text{fixTrivial}(S_G)$
3: $(G_G, G_P) \leftarrow \text{graphFromBusStopSequences}()$ \hfill ▶ Assign GTFS stops having a single projection \hfill ▶ Introduces cycleBreakers
4: repeat
5: removedAtLeastOneCandidate \leftarrow false
6: $\text{handleTriples}((G_G, G_P))$ \hfill ▶ Vertex in the middle has inDegree = outDegree = 1
7: $\text{handleNonBifurcatingMaximalSequences}((G_G, G_P))$ \hfill ▶ Internal vertices have inDegree = outDegree = 1
8: $\text{handleStars}((G_G, G_P))$
9: $\text{reduceCycleBreakers}((G_G, G_P))$ \hfill ▶ Removes cycleBreakers that became redundant by fixing some vertices \hfill ▶ Either by explicit discarding or as a consequence of fixing
10: until \negremovedAtLeastOneCandidate
11: components $\leftarrow \text{decompose}((G_G, G_P))$
12: for all $c \in$ components do
13: assign(c) \hfill ▶ Assignment by solution enumeration
14: end for
- Example of a triple
Algorithm 4.1 Determination of optimal assignment of projected stops S_P to GTFS stops S_G.

1: $S_P \leftarrow projStops(S_G)$
2: $fixTrivial(S_G)$
3: $\langle G_G, G_P \rangle \leftarrow graphFromBusStopSequences()$
4: repeat
5: $removedAtLeastOneCandidate \leftarrow false$
6: $handleTriples(\langle G_G, G_P \rangle)$
7: $handleNonBifurcatingMaximalSequences(\langle G_G, G_P \rangle)$
8: $handleStars(\langle G_G, G_P \rangle)$
9: $reduceCycleBreakers(\langle G_G, G_P \rangle)$
10: until $\neg removedAtLeastOneCandidate$
11: $components \leftarrow decompose(\langle G_G, G_P \rangle)$
12: for all $c \in components$ do
13: $assign(c)$
14: end for

- Assign GTFS stops having a single projection
- Introduces cycleBreakers
- Vertex in the middle has $inDegree = outDegree = 1$
- Internal vertices have $inDegree = outDegree = 1$
- Removes cycleBreakers that became redundant by fixing some vertices
- Either by explicit discarding or as a consequence of fixing
- Assignment by solution enumeration
Example of a maximal non bifurcating sequence
Algorithm 4.1 Determination of optimal assignment of projected stops S_P to GTFS stops S_G.

1: $S_P \leftarrow \text{projStops}(S_G)$
2: $\text{fixTrivial}(S_G)$
3: $\langle G_G, G_P \rangle \leftarrow \text{graphFromBusStopSequences}()$
4: repeat
5: $\text{removedAtLeastOneCandidate} \leftarrow \text{false}$
6: $\text{handleTriples}(\langle G_G, G_P \rangle)$
7: $\text{handleNonBifurcatingMaximalSequences}(\langle G_G, G_P \rangle)$
8: $\text{handleStars}(\langle G_G, G_P \rangle)$
9: $\text{reduceCycleBreakers}(\langle G_G, G_P \rangle)$
10: until $\neg \text{removedAtLeastOneCandidate}$
11: $\text{components} \leftarrow \text{decompose}(\langle G_G, G_P \rangle)$
12: for all $c \in \text{components}$ do
13: $\text{assign}(c)$
14: end for

\triangleright Assign GTFS stops having a single projection
\triangleright Introduces cycleBreakers
\triangleright Vertex in the middle has $\text{inDegree} = \text{outDegree} = 1$
\triangleright Internal vertices have $\text{inDegree} = \text{outDegree} = 1$
\triangleright Removes cycleBreakers that became redundant by fixing some vertices
\triangleright Either by explicit discarding or as a consequence of fixing
\triangleright Assignment by solution enumeration
- Example of a star
Algorithm 4.1 Determination of optimal assignment of projected stops \(S_p \) to GTFS stops \(S_G \).

1: \(S_p \leftarrow projStops(S_G) \)
2: \(fixTrivial(S_G) \)
3: \(\langle G_G, G_P \rangle \leftarrow graphFromBusStopSequences() \)
4: repeat
5: \(removedAtLeastOneCandidate \leftarrow false \)
6: \(handleTriples(\langle G_G, G_P \rangle) \)
7: \(handleNonBifurcatingMaximalSequences(\langle G_G, G_P \rangle) \)
8: \(handleStars(\langle G_G, G_P \rangle) \)
9: \(reduceCycleBreakers(\langle G_G, G_P \rangle) \)
10: until \(\neg removedAtLeastOneCandidate \)
11: \(components \leftarrow decompose(\langle G_G, G_P \rangle) \)
12: for all \(c \in components \) do
13: \(assign(c) \)
14: end for

\(\triangleright \) Assign GTFS stops having a single projection
\(\triangleright \) Introduces cycleBreakers

\(\triangleright \) Vertex in the middle has \(inDegree = outDegree = 1 \)

\(\triangleright \) Internal vertices have \(inDegree = outDegree = 1 \)

\(\triangleright \) Removes cycleBreakers that became redundant by fixing some vertices

\(\triangleright \) Either by explicit discarding or as a consequence of fixing

\(\triangleright \) Assignment by solution enumeration
Example of a component
Algorithm 4.1 Determination of optimal assignment of projected stops S_P to GTFS stops S_G.

1. $S_P \leftarrow projStops(S_G)$
2. fixTrivial(S_G)
 \triangleright Assign GTFS stops having a single projection
 \triangleright Introduces cycleBreakers
3. $(G_G, G_P) \leftarrow graphFromBusStopSequences()$
4. repeat
5. removedAtLeastOneCandidate \leftarrow false
6. handleTriples$(\langle G_G, G_P \rangle)$
 \triangleright Vertex in the middle has inDegree $= \text{outDegree} = 1$
7. handleNonBifurcatingMaximalSequences$(\langle G_G, G_P \rangle)$
 \triangleright Internal vertices have inDegree $= \text{outDegree} = 1$
8. handleStars$(\langle G_G, G_P \rangle)$
9. reduceCycleBreakers$(\langle G_G, G_P \rangle)$
 \triangleright Removes cycleBreakers that became redundant by fixing some vertices
10. until \negremovedAtLeastOneCandidate
11. components \leftarrow decompose$(\langle G_G, G_P \rangle)$
 \triangleright Either by explicit discarding or as a consequence of fixing
12. for all $c \in \text{components}$ do
13. assign(c)
14. end for

Assignment by solution enumeration
Algorithm

- Reconstruct bus trips
 - Shortest path based
Results

Does it work?
Results

- **Network**
 - #nodes: 641 901
 - #links: 1 627 258

- **GTFS**
 - #bus stops: 30 654
 - #unique trips: 6 402

- **Projections**
 - #projected stop: 127 705
 - #average projected stops: 4

- **Algorithm**
 - 28 iterations
 - +/- 24 minutes
Results

- Visual inspection
Results

![Distribution of speed graph with curves labeled: Lognormal(Theta=0 Sigma=0.25 Zeta=3.43) and Gamma(Theta=0 Alpha=16.3 Sigma=1.96).]
The End!
Questions?