PLS FAC-SEM: an illustrated step-by-step guideline to obtain a unique insight in factorial data [Link]
Non peer-reviewed author version

Made available by Hasselt University Library in Document Server@UHasselt

Reference (Published version):

DOI: 10.1108/IMDS-07-2015-0318
Handle: http://hdl.handle.net/1942/22832
1. Introduction

Partial least squares structural equation modeling (PLS-SEM) is a versatile and often applied technique in business and social sciences that allows researchers to assess inter-construct relationships as well as relationships among constructs and their respective indicators (see Henseler et al. (2016) for an excellent state-of-the-art introduction and overview of PLS-SEM). In its most basic form PLS-SEM assumes that the data stem from a single population, meaning that a single model represents all observations well (Sarstedt et al., 2011). Very often, researchers face a heterogeneity of observations, meaning that for different subpopulations, different parameters hold. In those cases, partial least squares multiple group analysis (PLS-MGA) is a useful approach to tackle this heterogeneity (Henseler et al., 2009). In general terms, a PLS-MGA involves estimating separate models for each subpopulation and subsequently assessing whether significant differences exist between the sets of parameter estimates.

A special type of multigroup data occurs when the data are organized according to a so-called factorial design. A factorial design is a statistical experimental design consisting of two or more factors (comparable to grouping variables in PLS-MGA), each with discrete possible values or levels. For each of the resulting combinations of these levels across all of the factors involved (i.e., treatments), data are collected. Due to its specific nature, a factorial design allows researchers to examine the effect of the factors in isolation (i.e., main effects) as well as in combination (i.e., interaction effects), thereby making factorial designs¹ a useful and

¹ The use of factorial designs in high-quality studies in leading journals across different domains such as supply chain management (e.g., Singh and Kumar, 2012), information systems (e.g., Gan et al., 2012), software design (e.g., Mangalaraj et al., 2014), IT-enabled learning (e.g., Park et al., 2015), and marketing (e.g., Eggert et al., 2015) further illustrates the value of factorial designs.
efficient approach for business and management researchers (Neter et al., 1996; Montgomery, 2012).

Regular PLS-MGA analysis, which analyses the effect of a single grouping variable, may be used to assess the main effects but is incapable of assessing interaction effects that stem from the use of a factorial design. In this paper a new approach called partial least squares factorial structural equation modeling (PLS FAC-SEM) is introduced that enables researchers to assess the main and interaction effects resulting from an underlying factorial design on PLS-SEM parameter estimates. Compared to the existing arsenal of PLS-SEM analyses, the PLS FAC-SEM approach offers its users an additional and unique insight in their (experimental) data.

As can be concluded from the opening paragraphs, the introduction of PLS FAC-SEM involves a methodological contribution to the PLS-SEM domain. However, a methodological contribution is only truly valuable if it advances researchers’ possibilities to gain novel insights from their data. Therefore, the best way to demonstrate the added value of PLS FAC-SEM is to use an example showing a particular situation that is recognizable for managers and researchers alike. Moreover, to illustrate how PLS FAC-SEM relates to other existing approaches we explicate the relevant links where necessary throughout the example.

A question of high practical relevance for a (marketing) manager of an airline concerns whether and how complaint handling perceptions depend on situational (e.g., attribution complexity; is it clear who’s to blame? Yes; low attribution complexity vs. No; high attribution complexity) and customer characteristics (e.g., type of customer; private vs. business). This question can be tackled by conducting a (scenario-based) factorial experimental design in which both design factors (i.e., attribution complexity and type of customer) are crossed, resulting in a factorial design of four independent cells or groups: low attribution complexity-business customer; low attribution complexity-private customer; high
attribution complexity-business customer and high attribution complexity-private customer.

Regardless of the combination of design factor levels, each respondent is asked to fill out a survey containing items tapping their perceptions regarding constructs such as distributive justice (i.e., fairness of compensation), procedural justice (i.e., perceived fairness of complaint handling procedure), and satisfaction with complaint handling. These perceptions are generally assessed by means of Likert scales resulting in metric data.

Typically, this kind of factorial data are analyzed using n-way ANOVA allowing the researcher to address questions such as:

“Is satisfaction with complaint handling/distributive justice/procedural justice higher for situations in which there is high attribution complexity compared to situations in which there is low attribution quality?” [Main effect design factor “attribution complexity”]

“Is satisfaction with complaint handling/distributive justice/procedural justice higher for business customers than for private customers?” [Main effect design factor “type of customer”]

“Does the difference in satisfaction with complaint handling/distributive justice/procedural justice between business and private customers diminish when attribution complexity increases?” [Interaction effect attribution complexity*type of customer]

Despite its undisputable value, an important shortcoming is that n-way ANOVA only focuses on the mean value of a single outcome (i.e., complaint handling satisfaction/distributive justice/procedural justice). That is, n-way ANOVA does not provide an answer to the question how model relationships vary as a function of the underlying factorial design. Put differently, n-way ANOVA is incapable of answering research questions such as:

“Does procedural justice have a larger impact on complaint handling satisfaction in situations where attribution complexity is high?” [Main effect design factor “attribution complexity”]
“Does distributive justice have a larger impact on complaint handling satisfaction for private customers than for business customers?” [Main effect design factor “type of customer”]

“Does the greater impact of distributive justice over procedural justice on complaint handling satisfaction for private customers diminish when attribution complexity increases?” [Interaction effect attribution complexity*type of customer]

Indeed, PLS-MGA (see also Henseler et al. (2009)) can be used to address the effects of the design factors on the relationships in isolation (i.e., main effects), but this analysis would leave the question regarding of how the effect of one design factor on the inter-construct relationships depends on the other design factor (i.e., interaction effect) unanswered.

To address the last research questions involving the combined impact of design factors (i.e., interaction effect) on relationships, Iacobucci et al. (2003) proposed an approach called FAC-SEM (i.e., factorial structural equation models). That is, FAC-SEM combines the strengths of n-way ANOVA (i.e., ability to analyze interaction effects) and multiple group analysis (MGA) (i.e., focus on relationships) in a single approach. Although the FAC-SEM approach allows researchers to obtain a deeper and unique understanding of factorial data, it is hitherto only available in a covariance-based structural equation modeling (CB-SEM) context.

The aim of the current study is to extent the FAC-SEM approach to a PLS-SEM context and to provide a step-by-step guideline that shows how to apply the PLS FAC-SEM approach in practice. The significance of introducing PLS FAC-SEM in addition to the originally developed CB FAC-SEM can be seen from two perspectives. First, given the general, manifold advantageous features of PLS-SEM over CB-SEM (see also Sarstedt et al., (2014); Hair et al., (2011)), the introduction of PLS FAC-SEM will make the FAC-SEM methodology applicable in a larger number of practical research situations. Second, given the differences in underpinnings of PLS-SEM and CB-SEM (see also Rigdon (2012; 2014)), an

2 Note that the focus of this paper is on inter-construct or structural model relationships. Yet, the FAC-SEM approach can also be applied on measurement model relationships.
extension of the FAC-SEM approach in a PLS-SEM context offers possibilities to apply the approach to more prediction-oriented research contexts.

The remainder of this paper is structured as follows. Section 2 provides a brief introduction of the key building blocks of the PLS FAC-SEM approach and discusses its added value. Section 3 is the core of the paper and contains a detailed illustrated step-by-step guideline of the PLS FAC-SEM approach. Finally, section 4 summarizes the main conclusions.

2. PLS FAC-SEM: Its Building blocks and introduction

In order to fully appreciate the merits of PLS FAC-SEM, it is necessary to explain what is meant by factorial designs, main effects, and interaction effects. Furthermore, the characteristics of the two methodological approaches to which PLS FAC-SEM is closely linked, that is, n-way ANOVA and MGA, need to be understood. Finally, the merits of PLS FAC-SEM over CB FAC-SEM are underscored.

2.1 Factorial designs

A factorial design is a statistical experimental design used to assess the effects of two or more design factors simultaneously. Each design factor consists of a (not necessarily equal) number of levels. The treatment conditions in a factorial design are combinations of the factor levels. Figure 1 panel A provides a graphical overview of a factorial design consisting of two design factors (i.e., A and B), each having two levels (i.e., a_1, a_2, b_1, and b_2), resulting in four cells (i.e., a_1b_1, a_1b_2, a_2b_1, and a_2b_2).

3 It is important to explicitly note that the term factor in the context of a factorial design, and thus PLS FAC-SEM, has a different meaning than what is usually implied by this term in PLS-SEM (i.e., a construct as implied by the common factor model). In order to avoid unnecessary confusion, we therefore decide to refer to the factor in a factorial design as design factor.

4 Without loss of generalizability we focus on 2*2 factorial designs. Factorial designs with more than two factors are possible as well as factorial designs in which factors have more than two levels.
2.2 Main and interaction effects

The arrangement of a factorial design is such that information can be obtained about the influence of each of the design factors separately (i.e., main effects) and about how the design factors combine to influence relevant outcomes (i.e., interaction effects). Each design factor’s main effect involves the impact of that design factor on a particular outcome disregarding the impact of the other design factor. The interaction effect assesses how the impact of a design factor on an outcome depends on the level of the other design factor. Put differently, the presence of a significant interaction effect indicates that the impact of a design factor is not constant across levels of the other factor. For an extensive treatment of main and interaction effects the interested reader is referred to Keppel (1991) and Montgomery (2012). As can be seen in Figure 1 panel D factorial designs imply hypotheses for each separate main effect as well as their interaction effect.

2.3 n-way ANOVA

Typically, n-way ANOVA is used to assess how the mean value of an outcome variable differs as a result of the design factors making up the factorial design (see also Figure 1 panel B). Consistent with the distinct nature of factorial designs, a pivotal feature of n-way ANOVA is its ability to unravel the variance present in some metric outcome variable to determine whether the mean value of this outcome can be explained by the design factors separately (i.e., main effects) and/or the design factors in combination (i.e., interaction effects). For an overview of the statistical hypotheses underlying associated with n-way ANOVA, see Figure

Moreover, no restrictions apply to whether the number of levels per factor need to be equal. The proposed PLS FAC-SEM approach can also be applied to factorial designs that deviate from the 2*2 format employed in this paper.
Panel D. For illustrative questions that can be addressed with n-way ANOVA, see also the first set of research questions mentioned in the introduction of this study.

It should be noted that ANOVAs can also be conducted using standard PLS-SEM software as explained and illustrated by Streukens et al. (2010).

2.3 Multi-group analysis (MGA)

Despite n-way ANOVA’s key feature to assess both main effects and interaction effects, a notable shortcoming is its focus on an outcome’s mean value, rather than on relationships. As such, research questions involving the impact of design factors on parameters associated with the relationships among different constructs (see for examples the second set of question in the introduction) and/or relationships among constructs and their respective measures cannot be assessed using n-way ANOVA.

Traditional MGA, regardless of whether it is applied in a PLS-SEM context or not, is only capable of assessing the impact of design factors on inter-construct relationships in isolation (i.e., main effects), thereby failing to take into account possible interaction effects that may exist between design factors. Failing to take into account possible interaction effects may lead to erroneous conclusions regarding the main effects as interaction effects per definition mean that the main effect of one design factor is not constant for different levels of the other design factor.

2.4 FAC-SEM
Originally developed by Iacobucci et al. (2003), FAC-SEM is a special kind of MGA in which the different groups represent the different cells of a factorial design. The purpose of FAC-SEM is to statistically test whether and how model relationships vary significantly as a function of the underlying factorial design, both in terms of main and/or interaction effects. As also shown in Figure 1 panel C, FAC-SEM’s scope of investigation involves model parameters describing relationships rather than construct means.

Figure 2 below illustrates the added value of FAC-SEM relative to n-way ANOVA and MGA. Basically, FAC-SEM combines the ability to assess the influence of both main and interaction effects of design factors (cf. n-way ANOVA) with a focus on relationships (cf. MGA). As a result FAC-SEM is capable of tackling research questions that are left unanswered by opting for n-way ANOVA or traditional MGA thereby allowing researchers to gain a new and unique insight in their factorial data. In terms of the example put forward in the introduction, the unique type of research question FAC-SEM can address involves how design factors in combination (i.e., interaction effect) have an impact on model relationships (see also the last research question put forward in the introduction).

[INSERT FIGURE 2 ABOUT HERE PLEASE]

2.5 PLS FAC-SEM

Similar to the general distinction between PLS-SEM and CB-SEM (see also Henseler et al., 2016, Sarstedt et al., 2014), extending the principles of the FAC-SEM approach as originally developed by Iacobucci et al. (2003) for CB-SEM to a PLS-SEM context opens up a plethora of new possibilities to apply the FAC-SEM approach. More specifically, the introduction of PLS FAC-SEM makes FAC-SEM analysis a realistic option for studies that involve more complex models, models that contain composites or a combination of composites and common factors, and situations which do not meet the stringent distributional assumptions.
and sample size requirements associated with CB-SEM. In a similar vein, PLS FAC-SEM is suitable for research contexts that focus on prediction rather than explanation (cf. Hair et al., 2011). Finally, it needs to be stressed that PLS FAC-SEM can also be used in combination with consistent partial least squares (PLSc) estimation as developed by Dijkstra and Henseler (2015a, 2015b). PLSc introduces a correction for structural model estimates when PLS is applied to reflectively measured constructs (i.e., common factors) thereby avoiding inflation of the path coefficients and thus reducing the probability of type I errors. PLSc is applicable to models that contain both common factors and composites, yet PLSc only corrects those constructs that are reflective (see also Dijkstra and Henseler, 2015a, 2015b).

3. The PLS FAC-SEM methodology: a step-by-step guide and illustration

Performing a PLS FAC-SEM analysis requires a sequence of steps that is summarized below in Figure 3. Although not explicitly mentioned in Figure 3, it is important to emphasize that before conducting the actual PLS FAC-SEM analysis, data on the underlying factorial design (i.e., variables denoting of the factors (and the treatments)) need to be included in the dataset. Furthermore, similar to traditional PLS-MGA, the data collection procedures as well as the model need to be identical across the cells of the factorial design under study.

[INSERT FIGURE 3 ABOUT HERE PLEASE]

The remainder of this section provides a detailed explanation of these steps. In order to further clarify the steps involved in PLS FAC-SEM we start in paragraph 3.1 with the introduction of a real-life example that will be used throughout the remainder of this section.
3.1 **PLS FAC-SEM data: the relative performance of different customer value methods**

Perceived customer value is a key determinant of customer behavior. Research by Leroi-Werelds *et al.* (2014) assessed the performance of the four alternative measurement methods that are most commonly used in empirical studies (i.e., the value measurement methods proposed respectively by Dodds *et al.* (1991); Gale (1994); Woodruff and Gardial (1996); Holbrook (1999)). Their performance was assessed in terms of their predictive ability of customer’s word of mouth intentions. Here, a customer value measurement method’s predictive ability of word of mouth intentions was measured by the R^2 value of the latter construct with the particular customer value measurement method acting as a predictor.

Closer inspection of Leroi-Werelds *et al.*'s (2014) results indicate that the differences in the predictive ability of customers’ word of mouth intentions between the four value measurement methods vary across settings (see for an overview of these results Table A1 in Appendix A). In this context, differences in predictive ability or relative performance reflect the differences in the amount of variance explained (i.e., R^2 value) for the criterion construct (i.e., customer’s word of mouth intent) for two customer value measurement methods. For example, the relative predictive ability of Gale’s (1994) method compared to Holbrook’s (1999) method in terms of customer’s word of mouth thus involves assessing the difference in R^2 values for the latter construct obtained when Gale’s (1994) method was used as a predictor and when Holbrook’s (1999) method was used as a predictor.

The aim of the current empirical study is to assess whether the relative performance of the four customer value measurement methods varies structurally as a function of product involvement and type of product. Besides the effect of level of product involvement and product type in isolation (i.e., main effects), we question whether the effect of product

5 Details pertaining to the actual empirical study can be found in Appendix A as well as in Leroi-Werelds *et al.* (2014). This paragraph only pays attention to those details of the study related to the PLS FAC-SEM approach.
involvement on relative predictive ability is dependent on product type (i.e., interaction effect).

To address the abovementioned research question, the data collection is structured as a factorial design composed of two design factors. The first design factor is the level of involvement and consists of two levels (i.e., low and high). The second design factor is the type of offering, which also consists of two levels (i.e., think and feel). Figure 4 provides a graphical presentation of this factorial design as well as the abbreviation used throughout the remainder of this paper. Furthermore, Figure 4 provides information about the study contexts used to operationalize the different cells of the factorial design. The relevant PLS FAC-SEM substantive hypotheses as well as the relevant theoretical background can be found in Appendix A. Appendix A also contains a detailed explanation of how the substantive hypotheses translate into relationship parameters which will be central to the PLS FAC-SEM approach.

[INSERT FIGURE 4 ABOUT HERE PLEASE]

The remainder of this section focuses on the relevant PLS FAC-SEM statistical hypotheses both in general terms as well as applied to the illustrative example.

3.2 **PLS FAC-SEM: an illustrated step-by-step guideline**

The results of the PLS FAC-SEM analysis accompanying this step-by-step guideline are summarized below in Table 1 and will be discussed in detail for each of the steps below.

[INSERT TABLE 1 ABOUT HERE PLEASE]
In Table 1, the results mentioned under the heading “estimates per cell” are the average parameter values per cell. They can be used as descriptives to further unravel the nature of the main and/or interaction effects that take central stage in the PLS FAC-SEM analysis.

PLS FAC-SEM Step 1: The omnibus test. The first step in PLS FAC-SEM is to assess whether the structural model parameters are indeed different across the cells of the factorial design. In general terms (as also employed in Figures 1 and 3), this involves testing the following null hypothesis:

\[H_0 : \beta(a_1b_1) = \beta(a_1b_2) = \beta(a_2b_1) = \beta(a_2b_2) \]

To test this null hypothesis Sarstedt et al.’s (2011) omnibus test of group differences is needed. Note that Sarstedt et al.’s (2011) omnibus test cannot be conducted using regular PLS-SEM software packages. In order to perform this test a SAS-code was written which can also be found in Appendix B.

Rejection of the omnibus test’s null hypothesis indicates that the model relationships (denoted by \(\beta \)) vary as a function of the underlying factorial design. Whether the differences are due to significant interaction effects and/or main effects needs to be assessed in the remaining PLS FAC-SEM steps. If the omnibus test’s null hypotheses cannot be rejected, the parameter under investigation is equal across all cells of the factorial design implying that the underlying factorial design does not have an impact on the parameter’s magnitude. In this case, the PLS FAC-SEM analysis stops.
In terms of the empirical illustration at hand, the first step of the PLS FAC-SEM approach involves testing three omnibus tests. That is, one omnibus test for each pair of customer value methods that we compare (i.e., comparison Woodruff and Gardial vs. Gale; Holbrook vs. Gale; Holbrook vs. Woodruff and Gardial). Specifically, this boils down to the three null hypotheses presented in Exhibit 1.

Exhibit 1: Null hypotheses omnibus tests

<table>
<thead>
<tr>
<th>Omnibus test hypothesis for the comparison Woodruff & Gardial vs. Gale</th>
</tr>
</thead>
<tbody>
<tr>
<td>[H_0 : \Delta_{WG-GA}(L\alpha F\varnothing) = \Delta_{WG-GA}(H\iota F\varnothing) = \Delta_{WG-GA}(L\alpha Th) = \Delta_{WG-GA}(H\iota Th)]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Omnibus test hypothesis for the comparison Holbrook vs. Woodruff & Gardial</th>
</tr>
</thead>
<tbody>
<tr>
<td>[H_0 : \Delta_{HB-WG}(L\alpha F\varnothing) = \Delta_{HB-WG}(H\iota F\varnothing) = \Delta_{HB-WG}(L\alpha Th) = \Delta_{HB-WG}(H\iota Th)]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Omnibus test hypothesis for the comparison Holbrook vs. Gale</th>
</tr>
</thead>
<tbody>
<tr>
<td>[H_0 : \Delta_{HB-GA}(L\alpha F\varnothing) = \Delta_{HB-GA}(H\iota F\varnothing) = \Delta_{HB-GA}(L\alpha Th) = \Delta_{HB-GA}(H\iota Th)]</td>
</tr>
</tbody>
</table>

In Exhibit 1, \(\Delta \) refers to the difference in predictive ability or relative performance (i.e., difference in \(R^2 \) values for customer’s word of mouth intentions as predicted by the different value measurement methods) and the letters \(WG \), \(GA \), and \(HB \) respectively denote the customer value measurement methods of Woodruff and Gardial, Gale, and Holbrook. Furthermore, the cell of the factorial design is denoted by the abbreviations in parentheses. Similar as in Figure 4, \(Lo \) indicates low involvement and \(Hi \) indicates high involvement. Whereas \(Fe \) and \(Th \) respectively indicate feel and think offerings.

As shown in Table 1, the results of the omnibus tests reveal that for each of the three customer value method-comparisons the null hypothesis can be rejected (all \(p < 0.001 \)). This

6 As explained in Appendix A as well as in the work of Leroi-Werelds et al. (2014) the value measurement method put forward by Dodds et al. (1991) does not possess favorable psychometric properties and will therefore be excluded from the PLS FAC-SEM analysis.
indicates that the parameter estimates across the cells of the factorial design are not equal. In terms of the application at hand, the rejection of the omnibus null hypotheses implies that the relative performance of two value measurement methods differs as a function of the level of involvement, the type of offering, and/or their interaction. The subsequent steps are needed to further assess the nature of the across-cells parameter differences.

PLS FAC-SEM Step 2: Assessing interaction effects Similar to n-way ANOVA, upon rejection of the omnibus test’s null hypothesis, the PLS FAC-SEM analysis continues with the assessment of the highest-order statistically significant interaction (cf. Keppel, 1991). The rationale for this lies in the fact that a significant n^{th}-order interaction effect implies that the lower $(n-1)^{th}$ effect is not constant and therefore can only be meaningfully interpreted when the higher order interaction effect is ignored. For example, in a 2*2*2 factorial design, a significant third-order the interaction effect implies that the magnitude and/or nature of a second-order interaction effect depends on the level of a third design factor. Ignoring the significant third-order interaction, would lead to the false conclusion that there is a particular second-order interaction effect that is the same for all levels of the third design factor, whereas in reality it might be that a second-order interaction exists for a particular level of the third design factor and there is no (or different) second-order interaction effect for another level of the third design factor. In turn, significant second-order interaction effects indicate that a factor’s main effect depends on the level of the other factor involved in the second-order interaction effect. Again, ignoring the interaction effect may lead to erroneous conclusions about the magnitude and/or presence of the lower level effects. Empirical studies by Hui et al. (2004) and Van Dolen et al. (2008) provide examples of how significant higher-order interaction effects influence the interpretation of lower order effects.
To examine whether an interaction effect exists, the bootstrap estimates obtained in the first step of Sarstedt et al.’s (2011) omnibus test are used to construct bias-corrected percentile confidence intervals to test the null hypothesis whether the difference in parameter estimate stemming from one design factor remains unaffected by the other design factor. For a detailed explanation of how to construct bias-corrected percentile bootstrap confidence intervals see Streukens et al. (2010) and Streukens and Leroi-Werelds (2016). For this study, all confidence intervals were constructed in Microsoft Excel using the relevant bootstrap output from smartPLS 3.0 (Ringle et al., 2015) as a starting point.

In terms of the factorial design presented in Figure 1, the following general null hypothesis applies for the interaction effect:

\[H_0 : |\beta_1(a_1b_1) - \beta_1(a_2b_1)| - |\beta_1(a_1b_2) - \beta_1(a_2b_2)| = 0 \]

Rejection of the interaction effect’s null hypothesis (i.e., the confidence interval contains the value zero), implies that a design’s factor effect on the structural relationships under study depends on the level of the other design factor.

When a significant interaction effect is evidenced, the researcher is advised to create a so-called interaction plot to gain further insight in the nature of the interaction effects. An interaction plot is a graph containing the mean parameter values for each cell of the factorial design. The x-axis of the interaction plot contains the different levels of one design factor. The interaction plot contains lines (equal to the number of levels of the other design factor) that connect the mean parameter values of the cells corresponding to a particular level of the other design factor (see Keppel (1991) Chapter 9 for a detailed overview of the construction of interaction plots). Note that the in-depth inspection of the interaction effect is strongly driven by theoretical considerations (i.e., what does the substantive literature hypothesize in terms of an interaction effect). That is, which design factor is used to represent the lines in an
interaction plot and which factor is placed on the x-axis, is a decision that should be in line with the underlying substantive theory.

For the empirical study at hand, three (second-order) interaction effects are relevant (i.e., one for each of the three pair-wise customer value methods comparisons), leading to the three null hypotheses presented in Exhibit 2 (same notation applies as used in Exhibit 1).

Exhibit 2: Null hypotheses interaction effects

Interaction effect hypothesis for the comparison Woodruff & Gardial vs. Gale

\[H_0 : |\Delta_{WG-GA}(Lo, Fe) - \Delta_{WG-GA}(Lo, Th)| = |\Delta_{WG-GA}(Hi, Fe) - \Delta_{WG-GA}(Hi, Th)| \]

Interaction effect hypothesis for the comparison Holbrook vs. Woodruff & Gardial

\[H_0 : |\Delta_{HB-WG}(Lo, Fe) - \Delta_{HB-GW}(Lo, Th)| = |\Delta_{HB-WG}(Hi, Fe) - \Delta_{HB-GW}(Hi, Th)| \]

Interaction effect hypothesis for the comparison Holbrook vs. Gale

\[H_0 : |\Delta_{HB-GA}(Lo, Fe) - \Delta_{HB-GA}(Lo, Th)| = |\Delta_{HB-GA}(Hi, Fe) - \Delta_{HB-GA}(Hi, Th)| \]

As can also be seen in Table 1, a significant interaction effect is present for two out of the three comparisons (Woodruff and Gardial vs. Gale: .14 CI_{95} = [.02; .25]; Holbrook vs. Gale: .24 CI_{95} = [.11; .38]). This implies that the difference in relative performance of the value measurement method of Woodruff and Gardial (Holbrook) compared to that of Gale between think and feel offerings depends on the level of involvement.

For these significant interaction effects, the corresponding interaction plots were constructed to gain a better understanding of the interaction effect. These interaction plots are shown in Figure 5 below. Inspection of the interaction plots shows that the interactions are disordinal in nature as the lines of the plot cross each other. To fully understand the exact
nature of the interaction effects, an analysis of the relevant simple effects is needed (see also step 3A below).

[INSERT FIGURE 5 ABOUT HERE PLEASE]

It is important to note that the third and final step of the PLS FAC-SEM approach depends on the outcome of step 2. If there is a significant interaction effect, the researcher proceeds by assessing the relevant simple effects (step 3A). In case there is no significant interaction effect, the researcher continues by assessing the design factor’s main effects (step 3B).

Step 3A PLS FAC-SEM: Simple effects. The existence of a significant interaction effect (i.e., assessed in step 2), implies that the effect of one design factor depends on the level of the other design factor. Put differently, a significant interaction effect means that the main effect of a design factor is non-constant across the level of the other design factor. As such, it is generally not meaningful to refer to main effects, even if they are statistically significant, when a significant interaction effect is present (cf. Zar, 1999). Rather, the simple effects need to be assessed.

Simple effects involve the analysis of the effects of one design factor at one level of the other design factor (Keppel, 1991). In general terms (and conform the design depicted in Figure 1), analysis of simple effects for design factor A involves testing:

\(H_0: \beta_1(a_i, b_1) = \beta_1(a_i, b_2) \) and \(H_0: \beta_1(a_1, b_2) = \beta_1(a_2, b_2) \)

Similarly, the general null hypotheses accompanying the analysis of the simple effects for design factor B are:

\(H_0: \beta_2(a_i, b_1) = \beta_2(a_i, b_2) \) and \(H_0: \beta_2(a_1, b_1) = \beta_2(a_2, b_2) \)
Bias-corrected percentile bootstrap confidence intervals need to be constructed to assess whether the simple effects are statistically significant. Similar as to the analysis of the interaction effect, the nature of the simple effects’ tests need to be guided by theoretical considerations.

For the empirical study at hand, simple effects are assessed for the customer value method comparison Woodruff and Gardial vs. Gale and the customer value method comparison Holbrook vs. Gale. In doing so, the levels of the design factor “involvement” are kept constant, meaning that a simple effect needs to be assessed for each level of the design factor “involvement”. The null hypotheses that apply to the assessment of the simple effects are shown below in Exhibit 3A (again, the same notation applies as in the previous exhibits). Note that these hypotheses are only developed and tested for the significant interaction effects.

Exhibit 3A: Null hypotheses simple effects

<table>
<thead>
<tr>
<th>Simple effect hypotheses for the comparison Woodruff & Gardial vs. Gale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low involvement</td>
</tr>
<tr>
<td>High involvement</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Simple effect hypotheses for the comparison Holbrook vs. Gale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low involvement</td>
</tr>
<tr>
<td>High involvement</td>
</tr>
</tbody>
</table>

Our results (see also Table 1) reveal that for the comparison Woodruff and Gardial vs. Gale a significant simple effect for the type of offering exists for high involvement products (.12 CI.95 = [.04; .22]), but not for low involvement products (.01 CI.95 = [−.09; .07]). A similar pattern is found for the comparison Holbrook vs. Gale (respectively, .17 CI.95 = [.07; .28] and −.07 CI.95 = [−.16; .01]). Thus, in terms of the substantive hypotheses, the relative
performance of Woodruff and Gardial’s method (Holbrook’s method) over Gale’s method in
equal for low involvement think offerings and low involvement feel offerings. In contrast,
relative performance of Woodruff and Gardial’s method (Holbrook’s method) over Gale’s
method is different for high involvement think offerings and high involvement feel offerings.

Step 3B PLS FAC-SEM: Main effects As stated above in paragraph 2.2 a design factor’s main
effect refers to the design factor’s effect on an outcome collapsed over the levels of the other
design factors. The number of main effects is equal to the number of design factors.

As also can be concluded from the hypotheses in Figure 1-Panel D above, testing a factor’s
main effect involves aggregating the data over other factor’s different levels (this is indicated
by the dots in the subscript). In terms of Figure 1 panel C, to test for the main effect factor A
the data over cells a_1b_1 and a_1b_2 are merged into a single group a_1b_* (i.e., $a_1b_1 + a_1b_2 = a_1b_*$)
and the data over cells a_2b_1 and a_2b_2 are merged into a single group a_2b_* (i.e.,
$a_2b_1 + a_2b_2 = a_2b_*$). The null hypothesis concerning the main effect of design factor A
equals:

$$H_0: \beta(a_1b_*) = \beta(a_2b_*)$$

In a similar vein, to test for the main effect of design factor B the data in the different cells
are merged such that $a_1b_1 + a_2b_1 = a_1b_1$ and $a_1b_1 + a_2b_2 = a_1b_2$. The accompanying null
hypothesis for the main effect of design factor B is:

$$H_0: \beta(a_1b_1) = \beta(a_1b_2)$$

In order to be able to test the main effects’ null hypotheses the data needs to be regrouped
and for the resulting groups the model needs to be re-estimated. For the actual testing of the

null hypotheses, bias-corrected percentile bootstrap confidence intervals need to be constructed.

For the situation at hand, two main effects need to be assessed for the customer value method comparison Holbrook vs. Woodruff and Gardial (i.e., no significant interaction effect). That is, a main effect of level of involvement and a main effect for type of offering. Exhibit 3B summarizes the relevant null hypotheses. Again, the notation used in Exhibit 3B is equal to that used in the previous exhibits.

Exhibit 3B: Null hypotheses main effects

- **Main effect hypothesis “Involvement” for the comparison Woodruff & Gardial vs. Holbrook**
 \[H_0 : \Delta_{WG-HB}(L) = \Delta_{WG-HB}(H) \]

- **Main effect hypothesis “Type offering” for the comparison Woodruff & Gardial vs. Holbrook**
 \[H_0 : \Delta_{WG-HB}(F) = \Delta_{WG-HB}(T) \]

Having re-arranged the data as outlined above and re-estimated the models, bias-corrected bootstrap percentile intervals were construct to test the main effect null hypotheses. As can be concluded from Table 1, a significant main effect is found for the design factor involvement (9.19 CI.,95, = [9.31; 9.06]), but not for the design factor type of product (9.01 CI.,95, = [9.13; 11]). This result means that the relative performance of Holbrook’s method compared to Woodruff and Gardial’s method varies as a function of the level of involvement, but not as a function of type of offering (i.e., feel-think).
4. Conclusion

The aim of this paper was to provide and illustrate a step-by-step guideline of the PLS FAC-SEM approach. The PLS FAC-SEM approach, which can be considered as a special kind of MGA, offers researchers the ability to obtain alternative and unique insights in their factorial data as it allows researchers to assess whether and how model relationships vary as a function of an underlying factorial design. More specifically, consistent with the logic underlying n-way ANOVA, PLS FAC-SEM assesses whether differences in inter-construct relationships depend on the design factors both in isolation (i.e., main effects) and in combination (i.e., interaction effect).

So far, the FAC-SEM approach, as originally developed by Iacobucci et al. (2003), was only available in a CB-SEM context. With the introduction of PLS FAC-SEM the virtues of the FAC-SEM approach now become applicable for a larger variety of research and modeling situations. We believe that the PLS FAC-SEM approach is a valuable addition to the PLS-SEM analysis toolbox.

As a final remark, it is important to note that the PLS FAC-SEM approach as discussed in this paper was limited to 2*2 factorial designs and inter-construct relationships. This choice was made for the ease of exposition of the PLS FAC-SEM approach. Following the principles of n-way ANOVA (see also Keppel (1991)), the PLS FAC-SEM approach can be extended to larger factorial designs without any problem. Likewise the PLS FAC-SEM approach can be used to assess the impact of the underlying factorial design on PLS-SEM parameters other than the structural model parameters.

Acknowledgements

The data collection was supported by the Marketing Science Institute. The study was conducted in the period that the second author received an FWO scholarship.
REFERENCES

APPENDIX A
The aim of this appendix is to provide more detailed information about the empirical study used to illustrate the PLS FAC-SEM approach.

Perceived customer value and predictive ability

Perceived customer value has been of continuing interest to marketing researchers and practitioners alike. Moreover, it has been recognized as one of the most significant factors in the success of organizations (Slater, 1997). In line with Zeithaml’s (1988, p. 4) definition that “perceived value is the consumer’s overall assessment of the utility of a product based on perceptions of what is received and what is given”, there has been a general consensus that customer value involves a trade-off between benefits and costs. Given the academic and practical relevance of customer value, there is a pressing need for further understanding of how this construct should be measured (e.g., Sánchez-Fernández et al., 2009).

Over the years several customer value measurement methods have been put forward in the literature, all using Zeithaml’s definition as point of departure. In general, the customer value measurement methods of Dodds et al. (1991), Gale (1994), Woodruff and Gardial (1996), and Holbrook (1999) dominate the marketing literature. Although all of these methods have their merits, considerable differences among them exist. One key domain of difference involves the nature of the benefits and costs included in the model. Following Gutman's (1982) means-end chain model, customer perceived benefits and costs can be measured at the attribute and/or consequence level. Attributes are concrete characteristics or features of a product or service such as size, shape or on-time delivery. Consequences are more subjective experiences resulting from product use such as a reduction in lead time or a pleasant experience (Gutman, 1982).
In a large-scale empirical study Leroi-Werelds et al. (2014) compared the predictive ability of these four commonly used customer value measurement methods (i.e., Dodds et al. (1991); Gale (1994); Woodruff and Gardial (1996); Holbrook (1999). The results of Leroi-Werelds et al. (2014) indicate that the relative predictive ability of the customer value measurement methods in terms of customers’ word of mouth intentions is not consistent across settings that differ in terms of involvement (high-low) and type of offering (feel-think). Table A1 below summarizes the relevant results reported in the study by Leroi-Werelds et al. (2014).

Table A1: Predictive ability of different customer value methods Leroi-Werelds et al. (2014)

<table>
<thead>
<tr>
<th></th>
<th>Toothpaste (Low involvement, Think offering)</th>
<th>Soft drink (Low involvement, Feel offering)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DO</td>
<td>GA</td>
</tr>
<tr>
<td>Toothpaste</td>
<td>.60 (36)</td>
<td>.58 (33)</td>
</tr>
<tr>
<td>Soft drink</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVD player</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day cream</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Notes: This table displays the R-values with the R²-values in parenthesis. DO = Dodds; GA = Gale; WG = Woodruff and Gardial; HB = Holbrook. * p < .10 ** p < .05

Underlying factorial design

The FCB grid classifies customers’ purchase decisions on two dimensions: involvement and type of offering. Involvement is defined as the attention of a customer to a product or a service because it is somehow important or relevant to him (Ratchford, 1987). Regarding the type of offering, the FCB grid discerns between think and feel offerings. Think offerings are
products or services bought to satisfy utilitarian needs, while feel offerings represent products and services bought to satisfy emotional wants.

Hypothesis development

Below we develop hypotheses reflecting the main effects of involvement (H1) and type of offering (H2) as well as the interaction effect between involvement and type of offering (H3). In terms of structural model parameters, the hypotheses focus on the structural relationships between on the one hand customer value and on the other hand word of mouth intention. More specifically, the parameters of interest reflect the predictive ability (i.e., R^2) of customer value as measured by the different approaches in terms of customers’ positive word of mouth intentions.

According to consumer research (e.g., Mulvey and Olson (1994), Claeys et al. (1995)) the level of involvement and the type of product (feel-think) influence customers’ means-end chains. Mulvey and Olson (1994) show that the higher the level of involvement, the more a person is aware of the consequences that stem from product use. Likewise, research by Claeys et al. (1995) reveals that, compared to think products, the means-end chains for feel products are characterized by a higher level of abstraction.

A key dimension of difference among the four commonly used customer value measurement methods is the extent to which they assess customer value perceptions at the attribute or consequence level. On the one hand, the methods proposed by Holbrook (1999) and Woodruff and Gardial (1996) take into account the consequences customers experience from product use, whereas the other methods do not. On the basis of this theoretical foundation, it is conjectured that the relative performance of customer value measurement methods is influenced by the degree of correspondence between the level of abstraction of the
benefits and sacrifices assessed by the customer value measurement method and the characteristics of the means-end chains that depend on the level of involvement and the type of product. This leads to the following hypotheses:

H1: The difference in ability to predict word of mouth intent between customer value measurement methods that assess benefits and sacrifices at the consequence level (i.e., Woodruff & Gardial and Holbrook) and customer value measurement methods that do not assess benefits and sacrifices at the consequence level (i.e., Gale and Dodds et al.) is larger for high involvement offerings than for low involvement offerings.

H2: The difference in ability to predict word of mouth intent between customer value measurement methods that assess benefits and sacrifices at the consequence level (i.e., Woodruff & Gardial and Holbrook) and customer value measurement methods that do not assess benefits and sacrifices at the consequence level (i.e., Gale and Dodds et al.) is larger for feel offerings than for think offerings.

Furthermore, Claeys et al. (1995) infer that under a high level of involvement the difference between think and feel offerings may become more prominent, because under high involvement conditions, the cognitive structure is better organized at the product-knowledge levels (i.e., the attributes) and the self-knowledge levels (i.e., the consequences). Accordingly, the following hypothesis is proposed.
H3: The suggested superiority in word of mouth predictability of customer value measurement methods that assess benefits and sacrifices at the consequence level (i.e., Woodruff & Gardial and Holbrook) over customer value measurement methods that do not assess benefits and sacrifices at the consequence level (i.e., Gale and Dodds et al.) for feel offerings will be even more pronounced in case of a high level of involvement.

Settings and sampling

In order to test the hypotheses outlined above, data were collected across four different settings reflecting the structure of the FCB grid. The products selected as research contexts (see also Figure 4) for our study were soft drinks (low involvement feel offering), toothpaste (low involvement think offering), day cream (high involvement feel offering), and DVD players (high involvement think offering). To enhance the external validity of our research, data were collected using one of the largest marketing research panels in Belgium.

Questionnaire design

We opted to construct 16 different questionnaires (i.e., collected from 16 different [sub]samples), so that each questionnaire assesses one customer value measurement method in one setting. All questionnaires were identical in terms of the measurement instrument for customer word of mouth intentions and the manipulation checks (i.e., measurement of involvement and type of offering). What differed across the questionnaires was the customer value measurement method employed which, furthermore, needed to be adapted to the particular setting. The content of the questionnaires as well as a detailed explanation of how the different customer value measurement methods were operationalized can be found in
Leroi-Werelds et al. (2014). Data collection continued until we obtained an effective sample size of 210 for each of the 16 questionnaires (i.e., setting-method combinations).

Analytical approach

Unless stated explicitly in the discussion of the results, all analyses were performed using SmartPLS 3 (Ringle et al., 2015). To assess the statistical significance of parameter estimates and differences in parameter estimates, we constructed bootstrap percentile confidence intervals based on J=5,000 bootstrap samples (cf. Preacher and Hayes, 2008).

Measurement model structure and properties

Following the work of Jarvis et al. (2003), the measurement model structures for the four customer value measurement methods used in this study are specified as follows. The scale suggested by Dodds et al. (1991) was modeled as a first-order factor model. A first-order composite model was used to operationalize Gale’s (1994) approach. Here, the constructed market-perceived price and market-perceived quality scores act as indicators.

For the remaining two methods (i.e., Woodruff and Gardial (1996), Holbrook (1999)) we specified second-order measurement models. For the Woodruff and Gardial (1996) approach, overall customer value is a second-order construct formed by two first-order constructs (i.e., benefits and sacrifices). In turn, the benefit construct is modeled as a composite and the sacrifice construct is modeled along the lines of a factor model. Regarding Holbrook’s (1999) approach, overall customer value represents a second-order construct with the dimensions arising from his typology acting as first-order constructs that form overall customer value. The various first-order constructs are either a composite or a factor. For more details
regarding the exact measurement model specifications, which reflects the theoretical foundations of the respective customer value measurement approaches, the reader is referred to Leroi-Werelds et al. (2014). To model customer value as a second-order construct, the two-stage approach suggested by Reinartz et al. (2004) was used. In the first stage, the latent variable scores were estimated without the second-order construct (i.e., customer value) present but with all of the first-order constructs (benefits and sacrifices for Woodruff and Gardial’s method and the various value types for Holbrook’s method) in the model. In the second stage, the latent variable scores of the first-order factors (i.e., benefits and sacrifices for Woodruff and Gardial’s method and the various value types for Holbrook’s method) were used as indicators of the second-order construct (i.e., customer value) in a separate higher-order PLS model.

We evaluated the psychometric properties of all first-order constructs used in our study. In terms of psychometric properties, it is crucial to distinguish between composites and factors (MacKenzie, Podsakoff & Jarvis 2005). Regarding the factor models, we assessed unidimensionality (procedure Sahmer et al. (2006) and cut-off criteria proposed by Karlis et al. (2003)), internal consistency reliability (procedure Jöreskog (1971)), item validity (procedure Hulland (1999)), within-method convergent validity and discriminant validity (procedures Fornell and Larcker (1981)). Regarding the composites, the statistical significance of the items was assessed (cf. Diamantopoulos and Winklhofer, 2001)) discriminant validity was assessed by examining whether the latent variable correlations fall within two standard errors of an absolute value of 1 (MacKenzie et al., 2005). Detailed results regarding the constructs’ psychometric properties can be found in Leroi-Werelds et al. (2014). All constructs possess favorable properties with exception of the customer value measurement method proposed by Dodds et al. (1991). Consequently, the Dodds et al. (1991) measurement approach will be left out of the remaining analyses.
Manipulation checks

To assess whether the chosen products indeed reflect the dimensions of the FCB matrix, manipulation checks were conducted. Following the procedure outlined by Streukens et al. (2010) it was assessed whether the average scores of the involvement items and the think/feel items included in the questionnaire differ for the relevant products. Regarding the level of involvement, we found significant differences between soft drink and day cream (mean SD = 4.26, mean DC = 4.94, p < 0.001) as well as between tooth paste and DVD player (mean TP = 4.14, mean DVD = 4.72, p < 0.001). With respect to the type of offering (think vs. feel), significant differences were found between soft drink and tooth paste (mean SD = 4.91, mean TP = 4.39, p < 0.001) as well as between day cream and DVD player (mean DC = 4.76, mean DVD = 3.99, p < 0.001).

Comparing the predictive ability of different customer value methods

A key challenge in the current situation is to make four substantially different customer value measurement methods comparable. This challenge is magnified further by the fact that the operationalization of each value measurement method also differs per setting. The answer to this challenge is to find a common structural model that is identical (and thus comparable) across methods and settings.

To place all customer value measurement methods, across all settings, on an even footing we proceeded as follows.

- Twelve (4 settings and 3 methods because Dodds et al. (1991) was not taken into account) structural models were estimated in which

\[y = f(\text{perceived customer value}) \], in the current illustration \(y \) refers to the respondent’s intention to engage in positive word-of-mouth.
For each of the twelve models, the estimation results were used to obtain the predicted values (\hat{y}) of the endogenous construct under study (i.e., positive word of mouth).

The predicted values (\hat{y}) were then regressed to the actual data (i.e., the latent variable scores) of the relevant construct (y). Thus, we estimated the following structural model: $y = f(\hat{y})$ which is identical for all methods and across all settings.

Similar as in a bivariate regression context, the resulting path coefficient equals the coefficient of multiple correlation R and indicates the model’s predictive ability. As can be seen above, predictive ability plays a central role in our hypothesis testing.

Appendix B: SAS-code omnibus test group differences

This appendix presents the SAS-code written to conduct Sarstedt et al.’s (2011) omnibus test. The omnibus test plays a pivotal role in “PLS FAC-SEM Step 1: The omnibus test” as outlined in the paper. Following the work of Sarstedt et al.’s (2011), the omnibus test involves four stages which are briefly described:

Stage 1 Sarstedt et al. (2011): For each of the groups (i.e., cells) $B = 5,000$ bootstrap samples are generated. For each of these samples the model is estimated. This is all done using smartPLS3 (Ringle et al., 2015). The bootstrap results for the relevant model parameter under study are saved in a separate data file (e.g., Excel).

Stage 2-4 Sarstedt et al. (2011): for the remaining three stages a SAS-code was programmed based on Vickery’s (2015) work. The code, together with comments to clarify its contents, is
listed below in exhibit B1. The input data stem from the data file created in Stage 1 of the Sarstedt et al. (2011) procedure, which is also explained above.

Note that Sarstedt’s et al. (2011) omnibus test can also be programmed in other software such as R or Gauss.

Exhibit B1: SAS-code for omnibus test

```sas
/* FAC-SEM USING PLS-SEM - SANDRA STREUKENS & SARA LEROI-WERELDS */
/* SASCODE FOR THE OTG TEST */

/* Start with reading the data file containing the bootstrap estimates of the model parameter under study into SAS. The bootstrap results are generated using standard PLS-SEM software and are subsequently saved in a separate file */

/* START OF THE CODE */
proc iml;
use Facsem;       /* Enter name of data file */
read all var {CELL01 CELL02 CELL03 CELL04} into xobs;  /* Read data into matrix format */
close Facsem;

/* User-defined module named FMOD(X) to enable SAS to calculate the variance ratio; see also equation (13) Sarstedt et al. (2011) */
start fmod(x);
grandmean = x[:];    /* Grand mean scalar */
n = nrow(x);         /* Number of rows in data matrix (i.e., B in OTG test) */
k = ncol(x);         /* Number of columns in data matrix (i.e., G in OTG test */
groupmean = x[:,];  /* Group mean; calculated for each of the G groups */
SSB = (groupmean-grandmean)**2;   /* Calculating SSB - The numerator of OTG test */
SSB = SSB[+];
SSW = (x-groupmean)**2;    /* Calculating SSW - The denominator of OTG test */
SSW = SSW[+];
MSSB = (k*n*(1/(k-1)))*SSB;  /* F-value (variance ratio) computation */
MSSW = (1/(n-1))*SSW;
F=MSSB/MSSW;
return (F);
finish;

/* User-defined module named PERMUTEWITHINROWS */
start PermuteWithinRows(m);
    colIdx = ranperm(1:ncol(m), nrow(m));
    f = (row(m)-1)*ncol(m);
    matIdx = f + colIdx;
    return( shape(m[matIdx], nrow(m)) );
finish;

/* Calculating the F-value for the original data file */
start fmod(xobs);
    for more details see Vickery (2015) */
colIdx = ranperm(1:ncol(m), nrow(m));
f = (row(m)-1)*ncol(m);
matIdx = f + colIdx;
return( shape(m[matIdx], nrow(m)) );
finish;

/* Calculating the F-value for the original data file */
fobs = fmod(xobs);   /* Applies FMOD to original data */
print fobs;  /* Shows you the output concerning the computed F-value */
call symputx('fobs',fobs);
```
/* GENERATING PERMUTATIONS AND CALCULATING THE ACCOMPANYING F-VALUES */

call randseed(12345);
B = 5000; /* Number of permutations */
fdist = j(0,1); /* Creation of vector containing the F-value for */
do j = 1 to B; /* each of the permutations. In a later step this is */
 x = PermuteWithinRows(xobs); /* also saved in a data file */
 F = fmod(x);
 fdist[j,] = F;
end;

/* COMPUTATION P-VALUE*/
pval = sum(fdist > abs(fobs)) / B; /* Calculating the pvalue for the omnibus test */
print pval[labels='P-value']; /* Shows you the output concerning the computed Pvalue */
call symputx('p',pval);

/*CREATION OF DATASET */
create facsemotg var {fdist}; /* Creation of data file containing the F-value for */
append; /* each of the permutations. Allows you to perform */
close facsemotg; /*additional (visual) inspections */
quit;

/* AND YOU'RE DONE! */
Figure 1: General overview of PLS FAC-SEM and its building blocks

Notes:
- μ_i refers to the mean value of a variable or construct.
- β_i refers to structural (or measurement) model parameter.

Hypotheses in general terms

1. H_0: Design factor A does not have an impact on the magnitude of the statistic under study.
2. H_0: Design factor B does not have an impact on the magnitude of the statistic under study.
3. H_0: Design Factor A’s impact on the magnitude of the statistic under study does not depend on the level of design factor B.

n-way ANOVA hypotheses

- $H_0': \mu_i(a_{h1}) = \mu_i(a_{h2})$
- $H_0': \mu_i(a_{h2}) = \mu_i(a_{h3})$
- $H_0': |\mu_i(a_{h1}) - \mu_i(a_{h2})| = |\mu_i(a_{h2}) - \mu_i(a_{h3})|$

PLS FAC-SEM hypotheses

- $H_0: \beta_i(a_{h1}) = \beta_i(a_{h2})$
- $H_0: \beta_i(a_{h2}) = \beta_i(a_{h3})$
- $H_0: |\beta_i(a_{h1}) - \beta_i(a_{h2})| = |\beta_i(a_{h2}) - \beta_i(a_{h3})|

The hypotheses for CB FAC-SEM are equal to those listed in panel D under PLS FAC-SEM.
<table>
<thead>
<tr>
<th></th>
<th>Parameter of interest</th>
<th>Interaction effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-way ANOVA</td>
<td>Means</td>
<td>Yes</td>
</tr>
<tr>
<td>MGA</td>
<td>Structural/measurement model parameters (i.e., relationships)</td>
<td>No</td>
</tr>
<tr>
<td>FAC-SEM</td>
<td>Structural/measurement model parameters (i.e., relationships)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes:

Interaction effect in this context refers to the interaction effect as the joint influence of the design factors of the underlying factorial design, not the interaction effect between two constructs as in a moderator analysis.

The statements made in Figure 2 hold regardless of whether the analyses are performed in a PLS-SEM context or not.
Figure 3: PLS FAC-SEM step-by-step

STEP 1: OMNIBUS TEST

\[H_0 : \beta_1(a,b_1) = \beta_2(a,b_2) = \beta_3(a,b_3) = \beta_4(a,b_4) \]

Perform Sarstedt et al.'s (2011) omnibus test.

STEP 2: INTERACTION EFFECTS

\[H_0 : |\beta(a,b_1) - \beta(a,b_2)| = |\beta(a,b_1) - \beta(a,b_3)| \]

Construct (bias-corrected) percentile bootstrap confidence intervals.

STEP 3A: SIMPLE EFFECTS

\[H_0 : \beta_1(a,b_1) = \beta_1(a,b_2) \]

\[H_0 : \beta_2(a,b_1) = \beta_2(a,b_2) \]

and/or

\[H_0 : \beta_3(a,b_1) = \beta_3(a,b_2) \]

\[H_0 : \beta_4(a,b_1) = \beta_4(a,b_2) \]

Draw interaction plot.

STEP 3B: MAIN EFFECTS

\[H_0 : \beta_1(a,b_1) = \beta_1(a,b_2) \]

\[H_0 : \beta_2(a,b_1) = \beta_2(a,b_2) \]

Requires regrouping the data and re-estimating the model.

Construct (bias-corrected) percentile bootstrap confidence intervals.
Figure 4: Factorial design empirical illustration PLS FAC-SEM

<table>
<thead>
<tr>
<th>Level of involvement</th>
<th>Type of offering</th>
<th>Study context</th>
<th>Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low (Lo)</td>
<td>Think (Th)</td>
<td>toothpaste</td>
<td>Lo, Th</td>
</tr>
<tr>
<td>High (Hi)</td>
<td>Think (Hi, Th)</td>
<td>DVD player</td>
<td>Hi, Th</td>
</tr>
<tr>
<td></td>
<td>Feel (Fe)</td>
<td>daycream</td>
<td>Hi, Fe</td>
</tr>
<tr>
<td></td>
<td>Feel (Lo, Fe)</td>
<td>softdrink</td>
<td>Lo, Fe</td>
</tr>
</tbody>
</table>
Figure 5: Interaction plots

Level of involvement * Type of offering Interaction
(Woodruff & Gardial vs Gale)

Level of involvement * Type of offering Interaction
(Holbrook vs Gale)
Table 1: Estimation results PLS FAC-SEM illustration

<table>
<thead>
<tr>
<th>Value measurement method comparison</th>
<th>Woodruff & Gardial vs. Gale</th>
<th>Holbrook vs. Woodruff & Gardial</th>
<th>Holbrook vs. Gale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimates per cell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta(H_i, F_e))</td>
<td>0.13 [.07; .20]</td>
<td>-0.09 [-.16; -.03]</td>
<td>0.04 [-.05; .12]</td>
</tr>
<tr>
<td>(\Delta(H_i, Th))</td>
<td>0.00 [-.05; .06]</td>
<td>-0.14 [-.14; -.09]</td>
<td>-0.14 [-.20; -.08]</td>
</tr>
<tr>
<td>(\Delta(Lo, F_e))</td>
<td>0.01 [-.05; .07]</td>
<td>0.03 [-.03; .09]</td>
<td>0.04 [-.02; .11]</td>
</tr>
<tr>
<td>(\Delta(Lo, Th))</td>
<td>0.02 [-.03; .08]</td>
<td>0.10 [.04; .15]</td>
<td>0.12 [.07; .16]</td>
</tr>
</tbody>
</table>

Step 1: Omnibus test (See Exhibit 1 for \(H_0\))

<table>
<thead>
<tr>
<th>p-value omnibus test</th>
<th>(H_0) rejected</th>
<th>(H_0) rejected</th>
<th>(H_0) rejected</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta(Hi, F_e) - \Delta(Hi, Th))</td>
<td>-0.1 [-.09; .07]</td>
<td>.05 [.02; .13]</td>
<td>-0.07 [-.16; .01]</td>
</tr>
<tr>
<td>(\Delta(Lo, F_e) - \Delta(Lo, Th))</td>
<td>.12 [.02; .22]</td>
<td>-.06 [-.15; .01]</td>
<td>.17 [.07; .28]</td>
</tr>
<tr>
<td>Difference (\Delta(Lo, F_e) - \Delta(Lo, Th))</td>
<td>.14 [.02; .25]</td>
<td>.11 [.01; .23]</td>
<td>.24 [.11; .38]</td>
</tr>
</tbody>
</table>

Step 2: Interaction effect (See Exhibit 2 for \(H_0\))

<table>
<thead>
<tr>
<th>Conclusion</th>
<th>(H_0) rejected</th>
<th>Failed to reject (H_0)</th>
<th>Failed to reject (H_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low involvement (\Delta(Lo, F_e) - \Delta(Lo, Th))</td>
<td>.12 [.04; .22]</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>Conclusion</td>
<td>(H_0) rejected</td>
<td>-----</td>
<td>----</td>
</tr>
</tbody>
</table>

Step 3A: Simple effects (See Exhibit 3A for \(H_0\))

<table>
<thead>
<tr>
<th>Conclusion</th>
<th>(H_0) rejected</th>
<th>Failed to reject (H_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High involvement (\Delta(Hi, F_e) - \Delta(Hi, Th))</td>
<td>-.01 [-.09; .07]</td>
<td>-----</td>
</tr>
<tr>
<td>Conclusion</td>
<td>Failed to reject (H_0)</td>
<td>-----</td>
</tr>
</tbody>
</table>

Step 3B: Main effects (See Exhibit 3B for \(H_0\))

<table>
<thead>
<tr>
<th>Conclusion</th>
<th>(H_0) rejected</th>
<th>Failed to reject (H_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Involvement (\Delta(Hi, \cdot))</td>
<td>-----</td>
<td>-12 [-.21; -.03]</td>
</tr>
<tr>
<td>(\Delta(Lo, \cdot))</td>
<td>-----</td>
<td>.07 [-.02; .15]</td>
</tr>
<tr>
<td>Difference</td>
<td>-----</td>
<td>-.19 [-.31; -.06]</td>
</tr>
<tr>
<td>Conclusion</td>
<td>-----</td>
<td>Failed to reject (H_0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conclusion</th>
<th>(H_0) rejected</th>
<th>Failed to reject (H_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of offering (\Delta(\cdot, Th))</td>
<td>-----</td>
<td>-.03 [-.11; .05]</td>
</tr>
<tr>
<td>(\Delta(\cdot, F_e))</td>
<td>-----</td>
<td>-.03 [-.13; .06]</td>
</tr>
<tr>
<td>Difference</td>
<td>-----</td>
<td>-.01 [-.11; .13]</td>
</tr>
<tr>
<td>Conclusion</td>
<td>-----</td>
<td>Failed to reject (H_0)</td>
</tr>
</tbody>
</table>

Notes: Hi = High involvement; Lo = Low involvement; Fe = Feel offering; Th = Think offering.

The term “Difference” refers to the difference between parameter estimates in the preceding rows.

For the exact calculation of the \(\Delta\)-parameter see Appendix A

Dashed lines are printed at locations where a particular hypothesis test was not applicable.

The simple effects appear twice in this table (i.e., in Step 2 and Step 3A). This is a deliberate choice made for reasons of clarity.