Introduction

- Best Medical Belgium S.A.
 - Production of radionuclides:
 - Co-57
 - Ti-201
 - I-123
 - Ge-68
 - With 2 cyclotrons
 - Purification in the chemical zone
 - Contamination of the installations
- Bankruptcy in 2012 ➔ dismantling
 - Need for radiological characterisation
 - Evaluation of future dismantling strategies

Objectives

1. Representative sampling of:
 - Contaminated materials
 - Activated materials
2. Measurement of the samples
3. Identification of the radionuclides
 - Quantitative
 - Semi-quantitative
4. Find the origin of the nuclides
 - Link back to the production process
5. Preliminary research of either:
 - Disposal options or
 - Decontamination approach

Methods

- **Representative sampling**
 - Contamination:
 - Swipe samples
 - Activated materials:
 - Drill campaign

- **Measurements**
 - 75 samples:
 - 59 swipe samples
 - 16 drill samples
 - Gamma spectroscopy
 - HPGe-detector
 - Apex gamma software
 - Energy & efficiency calibration

Results

- 13 identified radionuclides
 - Radionuclide
 - Co-60
 - Zn-65
 - Ge-68/Ge-68
 - Ag-108m
 - Ti-202
 - Ag-110m
 - Ti-204
 - Cd-109
 - Na-22
 - Mn-54
 - Co-57
 - Bi-207
 - Contamination activity range:
 - From $(5 \pm 2) \times 10^2 \text{ Bq/cm}^2$ to $(1.23 \pm 0.06) \times 10^4 \text{ Bq/cm}^2$
 - Activation activity range:
 - From $(3.9 \pm 0.5) \times 10^2$ to $(4.5 \pm 0.2) \times 10^4 \text{ Bq/g}$

Conclusion

- 13 radionuclides were found and linked to the original production process
- Hot cells will be decontaminated with:
 - Chemical decontamination
 - Abrasive blasting
- Glove boxes will be dismantled with:
 - Glove tent
- Future of activated components and materials in the hot cells:
 - Category A radioactive wastes