PREFACE

The master thesis is the final part of the Master Program of Transportation Sciences at Hasselt University, in which students have to implement all the knowledge they gathered during the two years of studying. The topic of this thesis was chosen in order to expand my knowledge in traffic modelling, which is a useful practice that is frequently used in many transportation planning companies all over the world.

I would like to thank my promoter prof. dr. ir. Tom Bellemans for always being able and willing to help me.

Many thanks go out to my supervisor Jan Vuurstaek, for his guidance, help and interest shown in my research. I would also like to thank him for his ability to answer all the questions I had.

I especially want to thank ir. Luk Knapen for his help, enthusiasm, knowledge and experience in the transportation behavior sciences, which he shared. His supervision allowed my research to be interesting and comfortable.

Most thanks go out to my family and friends, who supported me in writing this thesis and during two years I studied at the university and spent in Belgium. I appreciate that I have all of you in my life.

Julia Naumova

Master student of Transportation Sciences, January 2016
SUMMARY

This master thesis is aimed at building a traffic model for the region of Leuven, which focuses on the traffic generated by the University Hospitals. The model is aimed at public transport flow predictions, which could aid in the further development of public transportation systems and urban planning in the future. Building a traffic model needs operating a traffic simulator, which in this thesis was MATSim.

The first part of this master thesis consists of a literature study, which focused on understanding the main principles of building traffic models: their types, structure, methods of data collection, strengths and weaknesses.

Besides the literature study, the first phase of research included the hospital-related data collection - which, along with the synthetic plans derived from FEATHERS, will become components that will be included into the traffic model. The case study is an activity-based model and therefore has a time-dependent character. However, the data regarding to the University Hospitals of Leuven included the time-dependent information about the distribution of the hospital visitors throughout the day. To collect the information concerning the distribution, all those people who visited the hospitals have been divided into the following three main categories:

- Patients
- Visitors of patients
- Personnel

The average number of consultations on a workday, the single-day and multi-day hospitalizations and the number of beds found in the annual report (Guy Mannaerts, 2013), allowed to identify the average number of patients that visited the hospitals every day in 2013.

Based on the average number of trips made by one patient per day, rules regarding visiting patients found in the literature and data from the official hospital website (“UZ Leuven - Universitair ziekenhuis,” 2014), the daily distribution of visitors could be created.

To identify the daily personnel distribution, the total number of employees has been divided into the following categories:

- Doctors
- Nurses
- Remaining shift staff
- Remaining office hours staff

The information related to the hospital - doctors’ working hours (from 8h30 till 17h30), the list of doctors found on the hospitals website, allowed to find how many and when doctors arrived and left the hospitals during a single day.
The number of nurses has been calculated by multiplying the number of beds by the average amount of nurses needed per day per bed. This amount is identified by the hospitals nursing workforce calculation technique created by J. M. Welton (2011). For the nurses category, which, according to the same author, consists of complete shift employees, the hospitals have set shifts with specific start and end times:

- 6h00-14h00
- 14h00-22h00
- 22h00-6h00

The other remaining personnel is assumed to be composed of 10% shifts workers (“Vlaamse statistieken,” 2014), who work the same hours as nurses do, and 90% office hours staff working regular hours.

Moreover, the annual report provided the information concerning the mode choice of personnel of the Gasthuisberg campus. It was found that 14% of the personnel commuted by public transport, 57% of the staff preferred travelling by car (Jan Paesen, 2011), 15% of staff were car passengers and the remaining 14% were vulnerable road users (cyclists and pedestrians). In this thesis, the mode choice per personnel category has been calculated by multiplying the number of employees with the percentage of commuters mentioned earlier.

Finally, according to the master thesis topic, the data mentioned above has been collected using freely available sources, which did not demand special access to acquire.

The second part of the research is aimed at the simulation of the built traffic model using MATSim, in which the gathered hospital-related data and FEATHERS synthetic plans served as two kinds of inputs (along with other inputs, such as PT-schedules, population, network and facilities). From the outputs of this simulation, which consisted of event logs, information about buses have to be extracted and converted into the bus-line profiles by the research group of transportation behaviour at the transportation research institute at Hasselt University.

The third part has to evaluate the quality of the built model by comparison of the bus-line profiles obtained during this master thesis and the ones provided by the Belgian bus company ‘De Lijn’. A large number of similarities between corresponding profiles (e.g. approximately the same number of passengers alighting at the same bus stop) has to indicate that the built traffic model, based on the open source data obtained during the first stage of the research, has enough power to predict public transport flows in the future.

Keywords demand prediction, freely available data, MATSim, public transport, traffic modelling
TABLE OF CONTENT

PREFACE .. 1
SUMMARY .. 3
TABLE OF CONTENT ... 5
LIST OF FIGURES ... 7
LIST OF TABLES .. 8

1. **INTRODUCTION** .. 11
2. **OUTLINE THESIS** .. 13
 2.1 Data collection .. 13
 2.2 Simulation .. 14
 2.3 Comparing bus-line profiles ... 15
 2.4 Objective .. 17
 2.5 Research questions .. 18

3. **LITERATURE STUDY** .. 21
 3.1 SMART-PT .. 21
 3.2 Traffic modelling .. 21
 3.2.1 Four-step model .. 23
 3.2.2 Activity-based models ... 25
 3.2.3 ALBATROSS ... 28
 3.2.4 FEATHERS ... 29

4. **UNIVERSITY HOSPITALS-RELATED DATA COLLECTION** 31
 4.1 Daily basis .. 32
 4.2 The Gasthuisberg campus ... 34
 4.2.1 Mode choice ... 36
 4.3 Pellenberg campus ... 37
 4.4 Sint-Rafael and Sint-Pieter campus ... 38

5. **SIMULATION** ... 41

A case study in Leuven | 5
LIST OF FIGURES

Figure 1 Location of Leuven railway station and hospital campuses on the map .. 12
Figure 2 Research methodology .. 13
Figure 3 The Gasthuisberg campus showed on the map .. 15
Figure 4 Example of event log, MATSim output ... 15
Figure 5 Bus-line profile ... 16
Figure 6 MATSim basic structure ... 18
Figure 7 Process of traffic modelling ... 22
Figure 8 The four-step model .. 23
Figure 9 An example of how trips are modeled in a four-step model .. 24
Figure 10 Representation of linkage between activities’ in activity-based model .. 27
Figure 11 FEATHERS’ input and output data ... 30
Figure 12 Building blocks in MATSim .. 41
Figure 13 Network #1 ... 51
Figure 14 Network #1. Long home and work location parts .. 52
Figure 15 Network #1. Short home and work location parts ... 53
Figure 16 Example of a U-turn ... 56
Figure 17 Network #1. Bus station in the form of circle ... 58
Figure 18 Network #2 ... 59
Figure 19 Network #3 ... 60
Figure 20 Network #4 ... 62
Figure 21 Network #5 ... 63
Figure 22 Network #6 ... 65
Figure 23 Leuven city center with suburbs ... 69
Figure 24 Leuven city center .. 72
LIST OF TABLES

Table 1 List of objectives for every research step ... 17
Table 2 Examples of software packages .. 22
Table 3 The calculation of the simultaneously and not simultaneously active personnel .. 34
Table 4 The number of personnel per year for the Gasthuisberg campus 35
Table 5 The number of hospitalizations in the Gasthuisberg campus 35
Table 6 The calculation of the simultaneously and not simultaneously active personnel in the Gasthuisberg campus ... 36
Table 7 Daily commuting of the simultaneously active Gasthuisberg personnel 36
Table 8 Daily commuting of not simultaneously active Gasthuisberg personnel 37
Table 9 The number of personnel per year for the Pellenberg campus 37
Table 10 The total number of hospitalizations in the Pellenberg campus 38
Table 11 The calculation of the simultaneously and not simultaneously active personnel in the Pellenberg campus ... 38
Table 12 The number of personnel per year for the Sint-Rafael and Sint-Pieter campus ... 39
Table 13 The total number of hospitalizations in the Sint-Rafael and Sint-Pieter campuses ... 39
Table 14 The calculation of the simultaneously and not simultaneously active personnel in the Sint-Rafael and Sint-Pieter campuses 39
Table 15 Distribution of arriving and leaving Gasthuisberg personnel by mode 40
Table 16 Event logs produced after two simulations 54
Table 17 Network #1. Results/car ... 55
Table 18 Network #1. Results/bike ... 56
Table 19 Results/U-turns test ... 57
Table 20 Event logs. Simulation with U-form bus stations included into the network ... 58
Table 21 Network #2. Results ... 60
Table 22 Network #3. Results ... 61
Table 23 Network #4. Results ... 62
Table 24 Network #5. Results ... 63
Table 25 Network #6. Results/car ... 66
Table 26 Network #6. Results/bike 67
Table 27 Network #6. Results/bus 67
Building traffic models using freely available data | 10

Code 1 Config.xml ... 45
Code 2 Plans.xml ... 47
Code 3 Nodes and links in the network.xml 48
Code 4 Schedule.xml .. 50
Code 5 Vehicle’s parameters in vehicles.xml file 50
1. INTRODUCTION

It is not a secret that a lot of countries nowadays face the problem of increasing travel demand. City roads are overcrowded on a daily basis, which leads to unpleasant consequences for both travelers and the environment, such as air pollution, congested roads and an unsafe atmosphere in general (Serge Hoogendoorn & Victor Knoop, 2004). Today, a lot of factors such as growing population and increasing immigration increases the probability to use private cars, what definitely leads to more cars on the road, heavy traffic jams and increased air pollution. Such problems make public transportation an interesting alternative, since it could save money, has a high capacity and has less emissions and therefore less impact on peoples’ health. Governments, researchers and transportation companies are interested in the prediction of public transport demand in order to better regulate traffic flows and make public transportation systems more effective, especially in big cities with intensive traffic. Moreover, traffic flow control allows governments to avoid expensive, and in some cases impossible, infrastructural modifications during the urban planning phase.

To predict traffic flows and public transport demand, stakeholders try to develop transportation models, which aim is to reflect the real life traffic situation on the city roads. Besides software and other necessary tools to create such models, institutions and companies are interested in accurately gathered data, which plays an important role for further use in model simulating. Moreover, it influences the performance of the simulations. Researchers use a wide range of traffic models, but they always follow the idea of gathering the population, network, plans-related data/information as realistic as possible.

The focus of this thesis is to use freely available data concerning the distribution of travelers with regard to the University Hospitals of Leuven. Trips made by the staff, patients and visitors during the day and their mode choice are the points of interest.

A huge number of scientific papers have been dedicated to the ways and methods of data collection. The literature shows that interviewing people that live in the city are the most effective and reliable tool to collect accurate information (Joe Castiglione, Mark Bradley, & John Gliebe, 2014). Nevertheless, the topic of this thesis is using freely available data, and not to generate surveys to gather the necessary data.

The University Hospitals consist of four campuses, spread out over the city. The Gasthuisberg campus (hospital) is the largest one and located just outside the ring road, at a distance of four kilometer from the railway station. The smaller campuses Sint-Pieter and Sint-Rafael, were built less than one kilometer from each other and are located two kilometers from the train station. Due to the high demand for hospital services, the travel demand in this area is believed to have a significant influence on the city traffic. The bus-lines are going through the city
and buses accommodate a lot of passengers from the hospital campus, since 500 hospitalizations are made every day. Therefore, it can be stated that traveling to this campus is quite influential on the traffic inside of the city. Due to the large distance between Pellenberg and the station, around eight kilometers, and the campuses’ location outside the city center of Leuven, traffic inside this area is assumed to have a minimal effect on the buses heading towards Pellenberg and their bus-line profiles. Figure 1 shows the locations of the different campuses.

![Figure 1 Location of Leuven railway station and hospital campuses on the map (“Station Leuven - Google Maps,” n.d.)](image)

This thesis is divided in four main chapters. The first chapter is outline thesis in which objectives, research questions and detailed structure of the research are described. The ‘Literature study’ contains the theory dedicated to traffic modelling, its content and the software used to build the models. The third chapter is dedicated to hospital-related data gathering. All the numbers, calculations, techniques and other information, which were used to determine the distribution of people visiting the hospitals are described in this part of the thesis. Then, the chapter ‘Simulation’ focuses on the simulation of the network in MATSim with full explanations about how it works, what processes happened inside, what kind of input MATSim required and what kind of output MATSim provided. Afterwards, conclusions are made and discussed.
2. OUTLINE THESIS

The master thesis is divided in two chapters and spread over the two semesters of the academic year 2014-2015 and one semester of the academic year 2015-2016. The first chapter consists of the literature study and hospitals-related data collection. During this step, the information regarding the amount of people visiting the hospitals, the time of their arrival, their departure times and preferred mode choices were collected. This information contributed to the model creation and its preparation for further network simulation. In the second chapter, the main goal was to learn how to use the MATSim software. First, some small networks were generated and then large scenario were simulated. At the final stage, comparisons of bus-line profiles gathered in this research and given by De Lijn, were made. Figure 2 shows a schematic of the research methodology.

![Research methodology diagram](image)

Figure 2 Research methodology

The following sections give an overview of the stages of this thesis.

2.1 Data collection

The first stage included the collection of hospital-related data that was made available by the University Hospitals of Leuven. This data included information about number of personnel, their working hours, arrival and departure times of
visitors, consultations hours and the number of single-day and multi-day hospitalizations in 2013. The following information was searched for in order to simulate the traffic generated by the hospitals visitors and make the traffic model sufficiently powerful for further public transport predictions. To build the traffic model, which reflects the current situation as close as possible, the following information was obtained:

- How many personnel, patients and visitors do arrive at the hospitals and how are they distributed over time?
- At what time do personnel, patients and visitors leave the hospitals?
- How do these people commute?

In order to acquire this data, besides the information provided by the hospitals, some calculation techniques found in the literature were used. The hospital-related data and the data produced by FEATHERS schedule predictor, which has been developed as a framework to improve activity-based models for transportation demand, play a role of input for the MATSim. Detailed descriptions of FEATHERS software is discussed in section 3.2.4. FEATHERS is based on the Onderzoek verplaatsingsgedrag, further abbreviated as OVG (statistics in Flanders). Travel surveys are needed to generate daily plans. Zone-based FEATHERS daily plans were disaggregated to street addresses which means that the activity location zone was replaced by a randomly chosen street address within that zone. Furthermore, daily plans for hospitals visitors were generated by sampling individuals from the synthetic population and inserting a hospital visit into their plans. Examples of such daily plans are:

- Home-work-hospital-home
- Home-hospital-work-home
- Home-work-hospital-leisure-home
- Home-family-leisure-hospital-shopping-home etc.

Then, FEATHERS derived daily plans, which were converted into XML files, which the micro-simulations tool MATSim required.

2.2 Simulation

To run the traffic model, in addition to the previously described inputs (the hospital visitors distribution throughout the day, the synthetic plans, zoning, PT-timetable), MATSim also required some transportation and network-related data. In this case, information concerning stop locations, time tables and other public transport-related data coded in GTFS format needed to be converted into XML files (“iRail.be,” n.d.). Moreover, disaggregated locations and BB-zoning (building block which means one geographical unit level defined by the amount of
population and running time within every block) prepared by the transportation behavior research group of IMOB (the Transportation Research Institute, Hasselt University) are considered to complete the network before the simulation. Particularly, every model demands a network which represents auto, transit, non-motorized travel routes, distances, travel time and other network-related attributes that could influence decision making (Joe Castiglione et al., 2014). The network has been taken from OpenStreetMap (“OpenStreetMap,” 2014, “OpenStreetMap Wiki,” 2014) and downloaded to MATSim by a master student during his internship. OpenStreetMap provides geographical network data, such as roads, trails and railway stations. To see an example, a screenshot of OpenStreetMap is shown in Figure 3.

Figure 3 The Gasthuisberg campus showed on the map (“OpenStreetMap,” 2014)

The MATSim micro-simulation results in event logs is shown in Figure 4, which can be characterized as lists of activities that happened during the simulation. For instance, person with id #1 ends his home activity and enters a vehicle at 26100 sec, what corresponds to 7h15 (one hour contains 3600 seconds and the simulation starts at 00:00 hours).

```
<event time="26100.0" type="actEnd" person="1" link="12" actType="h" />
<event time="26100.0" type="departure" person="1" link="12" legMode="transit_walk" />
```

Figure 4 Example of event log, MATSim output

Another example is: person with id 25 stepped of bus 601 at the bus stop with id 3426. It can be said that there will be the huge list with lots of activities, but the last examples are of interest in this master thesis. In other words, the information regarding buses need to be extracted from every event log.

2.3 Comparing bus-line profiles

The final part of this thesis consists of comparison of bus-line profiles gathered in this research and delivered by the Belgian bus company ‘De Lijn’. For this reason, event logs extracted from MATSim have to be converted into XML files what will be done by the transportation behavior research group of IMOB (the Transportation Research Institute, Hasselt University).

A bus-line profile can be described as a specific graph that indicates how many passengers get on and off the bus throughout its entire route (Figure 5). After their generation, the bus-line profiles are analyzed. The y-axis denotes number
of passengers, the x-axis denotes the bus stop id’s. The green bars indicate how many people get on the bus, the blue bars how many passengers get off the bus and the red line indicates how many passengers are on the bus at any moment during its route.

Figure 5 Bus-line profile

To analyze if the bus-line profiles are of sufficient quality or not, it is necessary to find similarities or unacceptable differences between them by answering the following set of questions:

- Is the predicted number of passengers entering at a certain bus stop similar to the observed amount of passengers entering at that stop?
- Is the predicted number of passengers leaving the bus at a certain bus stop similar to the observed amount of passengers leaving the bus at that stop?
- Is the deviation extensive and if so, why?

One possibility of checking if the obtained results are of sufficient quality is to compare the bus-line profiles provided by ‘De Lijn’ with those gathered in this research. If the predicted bus-line profiles resemble the profiles provided by ‘De Lijn’, the developed traffic model is successful. If differences are observed, additional questions need to be answered:

- Why is the predictive model not successful in predicting accurate bus-line profiles?
- Does inaccurate data collection at the beginning of the process cause an insufficient model?
When the model does not seem to be sufficient enough, calibration might be required. This means that the input data should be checked and, if possible, modified. One should take into account that the data regarding the simulation of people’s activities in Leuven can be affected by the area surrounding the city. For example, people just passing by the Leuven area can make transit effect on the bus-line profiles. Finally, the modelling process should be repeated in order to achieve as similar bus-line profiles as possible, if necessary with modification of the data.

2.4 Objective

Nowadays, traffic modelling is an important and necessary tool to keep public transportation systems in congested cities under control (Scott Miller, 2011). As contribution to the SMART-PT project (see section 3.1), where future public transportation in the area of Leuven is analyzed (“project_details,” n.d.), this study focuses on the traffic generated by the visitors of the University Hospitals. Table 1 shows the set of goals of every research stage.

Table 1 List of objectives for every research step

<table>
<thead>
<tr>
<th>Phase</th>
<th>Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>data collection</td>
<td>1 Find freely available hospitals-related data</td>
</tr>
<tr>
<td></td>
<td>2 Calculate hospitals visitors distribution over a day</td>
</tr>
<tr>
<td></td>
<td>3 FEATHERS schedules+hospitals-related data=daily plans</td>
</tr>
<tr>
<td></td>
<td>4 Preparation of XML files</td>
</tr>
<tr>
<td>model simulation</td>
<td>1 Input XML files</td>
</tr>
<tr>
<td></td>
<td>2 Run the simulation</td>
</tr>
<tr>
<td></td>
<td>3 Get the output (event logs)</td>
</tr>
<tr>
<td></td>
<td>4 Extract bus-related information from event logs</td>
</tr>
<tr>
<td>comparing bus-line profiles</td>
<td>1 Create bus-line profiles</td>
</tr>
<tr>
<td></td>
<td>2 Compare bus-line profiles obtained with the ones delivered by ‘De Lijn’</td>
</tr>
</tbody>
</table>

During the first stage of this research, in which the data is collected, it was important to identify the distribution of the hospitals visitors, in which information regarding the total number of visitors, time-related information about visitors arriving and leaving and transport modes visitors use.

In this research to simulate the traffic in Leuven, the MATSim software is used (“Agent-Based Transport Simulations | MATSim,” 2014). The working process of this software is depicted in Figure 6. The micro-simulation process consists of the data input (in the scheme not all the files used in MATSim are depicted. To overview some more files see Section 5.1), the simulation process and gathering the outputs.
During the final stage of this research, the comparison of the bus-line profiles plays an important role to determine if calibration is needed or not.

2.5 Research questions

As stated earlier, the study is concerned with obtaining bus-line profiles which are created by micro-simulation, based on freely available information. The main goal of this master thesis is formulated as follows:

Building traffic models using freely available data

Since the main goal of this study is to obtain bus-line profiles of high quality, this research will contribute to the travel estimation of public transport demand in the city of Leuven. Based on the scientific sources and researchers’ opinions, further, importance and benefits to build traffic models were found and explained.

Since, the whole research is divided in different phases, some additional questions could be asked. For the the data collection stage, at least, the following questions need to be answered:

- **Where can the mode choice data of hospital visitors be obtained?** (infrastructure around the hospitals, parking facilities, bus-stop accessibility)
- **What are the working hours of the hospitals staff?**
- **What are the visiting hours?**
- **What are the average number of visits per patient per day?**
- **How many hospitalizations do the campuses have in a day?**
- **Where all the data should be found?**
- **What is the quality of the data?**
The simulation part of the thesis could have some questions concerning the principles of the software process. In order to run the simulation properly, some questions need to be answered:

- **What kind of input files should be generated?**
- **Which parameters should the configuration file include?**
- **Does the event file have the complete information?**

The last stage of the research—the comparison of bus-line profiles with the generated ones could have the following set of sub-questions, as previously stated in the methodology (see section 2.3):

- **Are there similarities between bus-line profiles generated by the simulation and the bus-line profiles provided by ‘De Lijn’?**
- **Is there a big deviation between bus-line profiles generated in this research and provided by ‘De Lijn’?**
- **What causes these differences?**
- **How much influence does the gathered data, from the first phase, has on the traffic?**

Comparison of the bus-line profiles is necessary to evaluate the quality of the model predictions. Answering the stated sub-questions will help to achieve the goals at every research stage.
3. LITERATURE STUDY

In order to provide additional information about the importance and goals of traffic modelling, literature sources have been studied. Most of those dedicated to traffic modelling contained a description of model types, structure, methods of data collection for the first input phase, possible software for the traffic model simulation phase and explanations of output types.

3.1 SMART-PT

This master thesis contributes to the SMART-PT (Smart Adaptive Public Transport) project, which aims at creating a public transportation system that is able to adapt itself, based on the changes in travel patterns of its users. The project recognizes the passengers flows in case of any changes (e.g. growing population) and estimates them in space and time, to decide how these flow can be accommodated. Then, those service routes which have a high demand and those ones which have a lower demand will be transcend to paratransit service. In this case paratransit is recognized as a special transport services often provided as a supplement to fixed-route busses and rail systems by public transit agencies. Afterwards, the slower adapting components such as buses, trams and LRT (light rail train) will be transcend as well (IMOB, 2014).

To get insight in building traffics, description of the modelling process, its importance, benefits and disadvantages are described in the next section, followed by examples of different model types.

3.2 Traffic modelling

The importance of traffic modelling nowadays is shown in many literature sources. In “Microscopic traffic model for road networks with a representation of the capacity drop phenomenon at the junctions” (B. Haut, G. Bastin, & Y. Chitour, 2005), it is said that traffic modelling is a good representation of the evaluation of a traffic state on a road network, which is necessary for the analysis of road congestion control strategies.

According to “Modelling transport” (Juan de Dios Ortuzar & Luis G. Willumsen, 2011), several problems with air pollution, road congestion and accidents happen daily due to the increasing number of cars. Accidents not only deteriorate the living quality, they also cost the economic systems a lot of money each year.

Traffic modelling is the simulation of transportation systems (roundabouts, junctions, routes, roads etc.), including the existing network in the region of interest and observation, socio-demographic situation and peoples’ behavior. Modelling should represent the reality as precisely as possible in order to be able to answer research questions.

Modelling is used to make predictions of traffic and its congestion in case of different circumstances such as changes in the city layout, the increase of
Building traffic models using freely available data etc. (Scott Miller, 2011). Besides predicting congestion, modelling also helps to predict CO₂ emission and accidents (Davy Janssens, 2014b).

In addition, traffic modelling allows engineers/researchers to predict queuing occurrences, their duration and location. Moreover, traffic modelling aims to support evaluating the methods of road congestion reduction (Serge Hoogendoorn & Victor Knoop, 2004).

The main core of building traffic models, as most literature shows, consists of data collection at the first stage; model simulation at the second and output gathering at the final stage. Figure 7 illustrates the main parts of modelling, including the simulation and obtaining activity patterns and event logs.

![Traffic modelling diagram](image)

Figure 7 Process of traffic modelling (Davy Janssens, 2014b)

To simulate the model, various traffic modelling software packages exist and are defined by three different levels (micro, meso and macroscopic), which are shown in Table 2. Microscopic means that simulation is organized at the city level: traffic on intersections and road segments can be simulated, mesoscopic means the area of regions and at the macroscopic level the large networks can be simulated. The tools related to the macro and mesoscopic levels are represented here as an example of existing software, in this thesis only the microsimulation model MATSim is used.

Table 2 Examples of software packages (“Traffic simulation,” 2014)

<table>
<thead>
<tr>
<th>Level</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>microscopic</td>
<td>MATSim</td>
</tr>
<tr>
<td></td>
<td>PTV VISSIM</td>
</tr>
<tr>
<td></td>
<td>PARAMICS</td>
</tr>
<tr>
<td>mesoscopic</td>
<td>DYNASMART</td>
</tr>
<tr>
<td></td>
<td>DTALite/NeXTA</td>
</tr>
<tr>
<td>macroscopic</td>
<td>TransCAD</td>
</tr>
<tr>
<td></td>
<td>PTV Visum</td>
</tr>
<tr>
<td></td>
<td>OmniTRANS</td>
</tr>
</tbody>
</table>

Building traffic models using freely available data | 22
Since, the software choice directly depends on which level of traffic model is needed, starting from the intersection traffic simulation on the microscopic level finishing by the modelling of traffic of a big networks at the macroscopic level.

As a part of the literature study, to understand the content of the model building, some different kinds of models are presented and described in this chapter.

3.2.1 Four-step model

Forecasting traffic flows is the main goal of transport modelling. Most models aim at predicting future traffic, in which factors influencing increasing or decreasing demand are identified. One of the most known and applied methods to build traffic models is the traditional four-step model, in which the process of travel demand is divided in four stages. These stages include the trip generation, the trip distribution, the mode choice and the route choice (Ahmed, 2012). A graphical representation of this model is depicted in Figure 8.

![Figure 8 The four-step model](image)

Trip generation is based on a zonal network. In every zone it is specified how much traffic is produced and how much traffic is attracted. Important factors (variables) influencing this production and attraction can be, the number of households, the location of hospitals or the number of available vehicles. This list can be a long. During the second stage, the number of trips produced and attracted are being linked to each other. Outcomes of the trip distribution phase include Origin-Destination matrices (OD-matrices), that clearly state how many persons are traveling from one zone to another. After the trips are distributed on the network, the third step describes which modes of transport are selected by the travelers. At this stage OD-matrices are derived to certain modes of transport. Traffic assignment, or route choice, specifies the different routes that are taken by the travelers. Based on certain algorithms, for example the least cost or the shortest path, trips are assigned a certain route on the network.

The total travel demand specified in the stages of trip generation, trip distribution, mode choice and trip assignments is fixed, with only the route choice decision to be determined. Most applications of the four-step model results equilibrated the link between travel times and/or trip distribution models.
for a second pass (and occasionally more) through the last three steps, but no formal convergence is guaranteed in most applications.

Literature has shown some disadvantages of the model. First of all, the model is not able to link different travel decisions that are made within one family. In many cases, the individual travel behavior significantly influences the entire network, but the model cannot predict the decisions of an individual traveler. Four step models cannot make a sequence in travel decisions, which makes it difficult to take into account the situation where members of one household are going to work by bus and coming back to home by another mode of transport, for example the tram (Davy Janssens, n.d.). For better visual understanding of how this model works, the process of four step models is shown in Figure 9. Figure shows no start time, duration or end time of an activity because four step models do not have a time dimension or direction during a trip. It only creates isolated and independent trips.

![Figure 9](image)

Figure 9 An example of how trips are modeled in a four-step model

Daily activities and the transportation network are the data which four step models need in order to run. Like all other models, four step models demand data concerning the travel behavior which can be obtained in most cases through surveying households or acquiring some statistical information. Daily travel plans and individuals’ diaries can help to calibrate four step models. In combination with these diaries, information about the transportation network is needed for validation of four step models.

Daily households plans (diaries) can provide the following information:

- Personal information (age, gender, social status, income, family members, the number of cars per family, etc.):
 - who is travelling?
• Travel data (e.g. type of trip, origin and destination, duration, sequence of trips, etc.):
 • where do people travel to, when, for how long, etc.?

• Vehicle data: to develop trip generation, trip distribution and mode choice levels:
 • this data contains the information concerning the transport mode that households use, even though a person uses the public transport—he is asked to answer which one and how many times per day.

To sum up, four step models require just like other models precise input data. Despite the fact that four step models do not build individual activity chains, but only create one agenda per household, FSMs are still frequently used by transportation companies in order to model the elementary network, predict travel demand and influence traffic in the way to relief air pollution, car congestion and other traffic-management related issues.

3.2.2 Activity-based models

There are some techniques that are used for building traffic models according to individual travel behavior and they are called activity-based models. Following is a description of models, their nature and an explanation of their benefits and disadvantages.

Travel demand consists of activities that people usually perform in their lives. Households and social groups influence travel behavior as well as spatial and transportation constraints (Davy Janssens, 2014a). Activity-based models predict the daily plan for each member of the (synthetic) population (UHasselt, 2014). Synthetic populations in traffic models are individual actors in the form of households and household members. For each of the households there should be characteristics like size, income, number of cars and address. Every member of the household is described by a set of individual characteristics such as sex, age, religion and work location (Rolf Moeckel & Klaus Spiekerman, 2003).

Activity-based models (ActBMs) focus on the people’s activities including their distribution in time. ActBMs describe how people plan their activities by identification of the following parameters such as:

- What type of activities are performed? (e.g. work, shopping, hospitals, leisure etc.)
- Where do these activities take place? (location/address of activities)
- When do people perform these activities? (time of the day)
- What is the duration of these activities?
• Which mode do people choose to go to an activity? (e.g. bike, car, public transport)

• Do people travel in groups?

• What is the order of activities? How are they scheduled?

Data collection is the main point for further implementation of the model. Data collection processes can be based on finding freely-available data, for example by using the annual reports, or by means of sending questionnaires to households with a set of questions concerning their daily plans. Information regarding land use, demographical data and transport network, are required for model development (Joe Castiglione et al., 2014).

Data collection in activity-based models is primarily based on the activity-based surveys, which are usually sent out to households in the region of interest. According to Rye Baerg (2014) the following types of surveys can be used for the data collection:

• Panel surveys

• Revealed/stated preference studies

• Internet-based surveys

• Tool-surveys

• The use of global positioning systems (Tom Bellemans et al., 2010)

Travel survey data is collected in order to develop different models, including activity-based ones. This data can be used for the estimation and calibration of models. Literature (Buehler, 2008) showed that in many countries the household travel survey is one of the main active transportation data collection techniques. Surveys are used to get the characteristics of different types of trips. For instance, the National Household Travel Survey (California) asks to mention the travel purpose, the length of trip and other origin-destination-related questions.

Analysis of all the surveys’ results collected allows agencies to chain the trips into tours, to classify the tours and order and convert them into one list of travel activities for one day.

According to Joe Castiglione (2014), a survey sample should be at least 6,000 households for a medium-to-large region. Since activity-based models require the collection of variables concerning the socio-economic status and choice alternatives variables for the respondents, the sample size should be larger (include more interviews/surveys).
These models also show that activities depend on various factors like gender, character, age and transportation network (Theo Arentze, Harry Timmermans, Frank Hofman, & Nelly Kalfs, 1998).

One of the main benefits of activity-based models is that they typically work at the individual level and contribute to better evaluation of travel behavior. In addition, activity-based models allow to account for specific reactions of every individual such as the use of another road or speed reduction to the travel demand management measures, for instance open the toll roads or to limited speed (Joe Castiglione et al., 2014).

Besides the benefits, some disadvantages of activity-based models have been identified. The models require detailed data collection and preparation of ‘sequences’ of people’s activities during the day.

Activity-based models are more important in research, because they offer greater behavioral realism than four-step models (UHasselt, 2014). To see existing differences between activity-based models and FSMs, the process of the former is shown in Figure 10. It can be clearly seen that the models simulate detailed segmentation of a person’s activities over a day. Figure shows that the models provide sequential activities per person over a day. Moreover, these activities are being created in a time frame, with a start and an end time of each activity. Beside the time, these models also represent the mode choice per activity.

![Figure 10](image)

Figure 10 Representation of linkage between activities’ in activity-based model

To work with activity-based models, it is necessary to generate a synthetic population for the region of interest (Zmud, Lee-Gosselin, Carrasco, & Munizaga, 2013). This is the main type of input and without this, prediction of households and personal behavior in the observed area would be impossible. This important input regarding to the population has characteristics like immigration, gender, age, socio-economic status, marital status, number of children and the...
information about driving licenses. In other words, all this information should be up to date (Zmud et al., 2013).

Some examples of data collection methods are described in the following paragraphs.

Data collection. Parrots
Besides the most frequently used tool to conduct a survey, necessary data can also be collected using GPS devices. One of the most famous representatives of automated data collection methods is named PARROTS (Personal Activity Registration and Recording of Travel Scheduling), which records car movements. A PDA (Personal Digital Assistant) can provide information about the owner’s location and route choice. The main benefit of the PDA is that all data is being saved regarding the scheduled and spontaneous routes (Tom Bellemans et al., 2010).

Land use data
Activity-based models need land use data as input, which can include the population, the number of jobs in each zone, location of schools and information regarding their employees and students, their living area and other information about how the zones are used.

Data collection improvement
Transportation companies should partner with local community-based organizations to collect data needed for the generation of traffic models. They should also partner with statistics companies to expand the opportunity to make data collection more accurately. In addition, regional transportation firms should implement new technologies in order to improve opportunities for interviewing. Cities should develop the systems of automated counters for transportation trips (Rye Baerg, 2014).

To make a conclusion, activity-based models are a powerful tool, most of which create OD-matrices; all the activities within the models are segmented and ordered in space.

3.2.3 ALBATROSS
ALBATROSS (A Learning-Based Transportation-Oriented Simulation System) is an activity-based model, which was built for the Dutch Transportation Department (“ALBATROSS - Travel Forecasting Resource,” n.d.). This activity-based model is a representative of activity-travel behavior and has been developed according to theories of travelers’ choices and preferences while they make decisions in complicated and complex environments and transportation networks. Nowadays, the Flemish activity-based model FEATHERS is based on ALBATROSS. This scheduler currently has 26 decision trees. Those are a set of decisions that people can make during a day, for instance trip chains like from home to work, from work to home. These trees simulate the daily plans at the individual level (Wang & Wets, 2012).

Building traffic models using freely available data | 28
ALBATROSS is an easy and comprehensive model. It helps users to identify and predict the set of activities which are made somewhere, at a given point in time, for some duration with somebody and by some kind of transportation mode (Arentze, Hofman, van Mourik, & Timmermans, 2000). The model can also predict some logical sequence of activities, taking into account some spatial and institutional constraints that are included in the models. The decision trees, which models use, help to identify the daily activity plans in a logical order.

ALBATROSS focuses on generating activity plans created for one day. Following is a brief description of how this model works. First of all, the model generates empty diaries where the activities will be included. Then, these activities will be added to the time frame, for example when an activity starts and finishes. The activity duration will also be determined. The locations of the activities are determined in the second stage of the model.

The ALBATROSS model is incorporated in FEATHERS. To use the model, it should be modified and adopted for the region of interest. The model demands the data of the case study regions to run.

In conclusion, this model uses the specific decision trees to represent the households’ choices and converts them from the activity travel data. Although this approach demands quite a large volume of data, ALBATROSS is considered to be useful for the forecasting of the travel demand (Theo Arentze & Harry J.P. Timmermans, n.d.).

3.2.4 FEATHERS

FEATHERS (Forecasting Evolutionary Activity-Travel of Households and their environmental Repercussions) is a framework that has been developed for the improvement of activity-based models for transportation demand. This software is a kind of scheduling model which is based on the ALBATROSS activity-based system. FEATHERS is frequently used by researchers in Flanders in order to predict the travel demand and learn the travel behavior (Bruno Kochan, Tom Bellemans, Davy Janssens, & Geert Wets, 2008).

The FEATHERS model generates agent-based activities per person within a household. To create the daily plans for individual, this tool demands the preparation of the following data:

- The synthetic population, which should have the socio-economic data, gender, age, income, education level etc.
- Traffic zones of the region of interest
- Decision trees based on the travel OVG surveys

This framework consists of a set of decision trees which are generated based on the data gathered by the surveys. The plans are being created taking into
account household characteristics such as gender, age, number of cars, work location, the sequence of their activities throughout a day, some geographical data, network and location of different buildings such as schools, shops and factories (Bruno Kochan et al., 2008). Figure 11 shows what FEATHERS schedule generator needs and what the outputs are.

![Diagram of FEATHERS schedule generator](image)

Figure 11 FEATHERS’ input and output data (Luk Knapen & Jan Vuurstaeck, 2014)

To conclude, FEATHERS creates individual daily plans consisting of the travel trips that are directly linked to activities. Moreover, its framework allows to predict increase and decrease in the travel demand. In addition, FEATHERS can make predictions in shifts of travel choices and reallocation of activities inside the network.

As it is shown in Figure 11, FEATHERS provides specific individual plan per person as its output.
4. UNIVERSITY HOSPITALS-RELATED DATA COLLECTION

This chapter represents the data regarding the distribution of people visiting the hospitals during the day in the year 2013. During the data collection process it was necessary to get information about everything related to trips from and out the hospitals (the list of variables has been shown in Section 2.1).

The hospitals-related data has been collected using official sources of information such as the website and the annual reports of the hospitals. Some calculation techniques found in the literature were used to make assumptions that could help to collect the data.

First of all, in the annual report for the year of interest (Guy Mannaerts, 2013) some basic numbers were found:

- There were around 63885 resident multi-day-patients hospitalizations. The term hospitalization means the act of placing a person in a hospital as a patient for longer than one day (“Hospitalization | Define Hospitalization at Dictionary.com,” n.d.)
- There were 99711 single-day (in many sources found as outpatient) hospitalizations. A patient is allowed to stay at the hospitals for the treatment for no longer than one day
- Around 672663 consultations were made
- From the 1995 beds (“Over UZ Leuven | UZ Leuven,” 2014) 90% (accordingly to (Lieve Creemers, 2014)) (1795 beds) were permanently occupied

Besides the patients-related data, the annual report also showed information regarding the personnel of the hospitals:

- The total number of employees was equal to 8892 people, including:
 - 822 doctors (“Vind een specialist via discipline | UZ Leuven,” 2014)
 - the number of nurses has been calculated as:
 \[1.9 \times 1995 \approx 3790 \]
 where 1.9 is amount of nurses personnel needed per bed per day (Welton, 2011)
 - the remaining staff:
 \[8892 - (822 + 3790.5) \approx 4279 \]
- around 10% according to Flemish Statistics ("Vlaamse statistieken,” 2014) of the remaining hospital staff works in shifts

\[4279 \times 0.1 \approx 428 \]

- the remaining office hours staff

\[4279 - 428 = 3851 \]

To identify the arrivals and departures of the hospitals employees, the working hours have been identified for each category of personnel and presented in the following list:

- Doctors and 90% of the remaining staff work 5 days a week during regular office hours starting from 8h30 till 17h30 ("Overzicht artsen en specialisten | UZ Leuven,” n.d.)

- Nurses and 10% of the remaining staff are assumed to work in shifts:
 - from 6h00 till 14h00
 - from 14h00 till 22h00
 - from 22h00 till 6h00

The emergency department is located in the Gasthuisberg campus and works 24 hours a day, therefore the data has been gathered separately for this department. Having around 64 beds, there were approximately 53428 registrations (Guy Mannaerts, 2013) or 146 admissions a day, taking into account that a year includes 365 days. For this department, visitors are allowed to come whenever they prefer, there are three options when visitors can come. These are the very brief visits:

- 11h00-11h30
- 15h30-15h45
- 18h30-19h00 ("Emergency medicine | UZ Leuven,” 2014)

Taking into account the rules mentioned on the website, no more than two visitors per bed are allowed. It can be easily calculated that on 64 beds in the emergency ward around 128 visitors can come in a day, and in each visiting hours window, it can be assumed that around 42 visitors are coming to this department.

4.1 Daily basis

The total number of beds is limited, so hospitalization is only possible for a person if one patient is leaving. The average number of the resident patient hospitalizations on a single working day was calculated as follows:

Building traffic models using freely available data | 32
In all of the calculations the rule of mathematical rounding up/down was applied. For example, if the number is equal to 0.6, it can be converted to 1, and if the number is equal to 1.4 it is converted to 1.

In this thesis, it was assumed that both single-day and multi-day hospitalizations for non-urgent reasons is only done on working days. There were 119 weekend days and official holidays.

Therefore, the total number of the outpatient hospitalizations in a year was calculated as follows:

\[
\frac{63885}{365 - 119} \approx 260
\]

According to the annual report, the number of consultations was around 2691 places per day. There was a small difference found between manually calculated numbers of workdays, when the consultations are allowed:

\[
\frac{99711}{365 - 119} \approx 405
\]

and the number of working days which was used to calculate the number of consultations per day in the annual report:

\[
\frac{672663}{2691} \approx 250
\]

It can be assumed that in order to determine the number of daily consultations, administration of the hospitals took into account the average number of consultations according to the past experience one year earlier. Increased working days opened for consultations can also be justified by personal employees preferences, working schedule flexibility or compulsory measures due to the increasing consultation demand.

To calculate the number of visits of all patients per day the following formula was used:

\[
1.79 \times 1795 \approx 3213
\]

In this formula, 1.79 is the average number of visits per patient per day (Marvin R. Duncan & Earl O. Heady, 1976). This value has been calculated according to the Delphi technique, also known as a forecasting method which relies on a panel of experts. This method is based on the questionnaires answered by experts two or even more times till the results are stable (“Delphi method,” 2015). It is applicable both in the US and Europe, so this value is considered to be appropriate to calculate the number of visits per day.
Because not everyone is at work every day, it has been decided to find simultaneously and not simultaneously active personnel during one working day. Column 2 in Table 3 illustrates the estimated maximum number of staff simultaneously active in the hospitals at a given moment in time. Column 3 shows the estimated number of people active during a given working day, but not necessarily all at the same time. This column delivers an estimate for the number of arrival and departure trips generated by the personnel for a working day under the assumption that neither full-time nor part-time employed people leave the hospitals during their workday or shift (whichever applies). Since other shift personnel has the schedule one working day per four days, the maximum number of shift personnel members simultaneously active in one working day has been found by means of division by four.

<table>
<thead>
<tr>
<th>Category</th>
<th>Maximum number of personnel members simultaneously active at a specific moment of the day in the hospitals during a working day</th>
<th>Number of personnel members active in the hospitals during a working day (not necessarily simultaneously)</th>
</tr>
</thead>
<tbody>
<tr>
<td>doctors</td>
<td>822</td>
<td>822</td>
</tr>
<tr>
<td>other personnel (office hours staff)</td>
<td>4279 – 428 = 3851</td>
<td>3851</td>
</tr>
<tr>
<td>nurses (shift staff)</td>
<td>[\frac{3790}{4} \approx 947]</td>
<td>947 \times 3 = 2841</td>
</tr>
<tr>
<td>other personnel (shift staff)</td>
<td>[\frac{428}{4} = 107]</td>
<td>107 \times 3 = 321</td>
</tr>
<tr>
<td>total</td>
<td>5728</td>
<td>7838</td>
</tr>
</tbody>
</table>

As it has been mentioned on the map in the introduction, all the campuses are spread over the city. With this in mind, besides the data gathered for all the campuses, the distribution of people visiting them has been calculated for each campus separately.

4.2 The Gasthuisberg campus

After identification of the annual and daily distribution of visitors for all of the hospitals, both resident patient and outpatient hospitalizations have been assigned to the campuses proportionally to the number of beds.

The visiting hours of the campus are as follows:

- 11h00-20h00

According to the information provided by the webpage of the University Hospital, the Gasthuisberg campus has 1500 beds in total (“Health Sciences campus Gasthuisberg | UZ Leuven,” n.d.), of which are 1350 permanently occupied.
The number of visits has been calculated with the following formula, where 1.79 is the average number of visits per patient per day:

\[1350 \times 1.79 \approx 2416 \]

Then, the number of doctors working at the campus was calculated from the list of doctors per campus and was equal to 686 doctors per year ("Vind een specialist via discipline | UZ Leuven," 2014).

Table 4 The number of personnel per year for the Gasthuisberg campus

<table>
<thead>
<tr>
<th>Category</th>
<th>In total</th>
</tr>
</thead>
<tbody>
<tr>
<td>doctors</td>
<td>686</td>
</tr>
<tr>
<td>nurses</td>
<td>1.9 \times 1500 = 2850</td>
</tr>
<tr>
<td>the remaining staff</td>
<td>6685 - (686 + 2850) = 3149</td>
</tr>
<tr>
<td>the remaining shift staff</td>
<td>3149 \times 0.1 \approx 315</td>
</tr>
<tr>
<td>the remaining office hours staff</td>
<td>3149 - 315 = 2834</td>
</tr>
</tbody>
</table>

Regarding to the number of personnel, this campus has a lion’s share among other campuses and was found as follows:

\[8892 \times \left(\frac{1500}{1995}\right) \approx 6685 \]

The following Table 5 shows the calculated number of resident and outpatient hospitalizations made in the year and during one working day of the year.

Table 5 The number of hospitalizations in the Gasthuisberg campus

<table>
<thead>
<tr>
<th></th>
<th>In a year</th>
<th>Daily basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>resident patient hospitalizations</td>
<td>63885 \times \left(\frac{1500}{1995}\right) \approx 48034</td>
<td>48034 \div 365 \approx 195</td>
</tr>
<tr>
<td>outpatient hospitalizations</td>
<td>99711 \times \left(\frac{1500}{1995}\right) \approx 74971</td>
<td>74971 \div 365 \approx 305</td>
</tr>
</tbody>
</table>

Table 6 illustrates the number of personnel that are simultaneously and not simultaneously active during one working day.
Building traffic models using freely available data | 36

Table 6 The calculation of the simultaneously and not simultaneously active personnel in the Gasthuisberg campus

<table>
<thead>
<tr>
<th>Category</th>
<th>Maximum number of personnel members simultaneously active at a specific moment of the day in the hospital during a working day</th>
<th>Number of personnel members active in the hospital during a working day (not necessarily simultaneously)</th>
</tr>
</thead>
<tbody>
<tr>
<td>doctors</td>
<td>686</td>
<td>686</td>
</tr>
<tr>
<td>other personnel (office hours staff)</td>
<td>3149 – 315 = 2834</td>
<td>2834</td>
</tr>
<tr>
<td>nurses (shift staff)</td>
<td>2850(^{\frac{4}{4}}) ≈ 712</td>
<td>712 * 3 = 2136</td>
</tr>
<tr>
<td>other personnel (shift staff)</td>
<td>315(^{\frac{4}{4}}) ≈ 79</td>
<td>79 * 3 = 237</td>
</tr>
<tr>
<td>total</td>
<td>4311</td>
<td>5893</td>
</tr>
</tbody>
</table>

4.2.1 Mode choice

Taking into account the fact that the Gasthuisberg campus is the biggest campus and the information regarding the daily commuting for only Gasthuisberg employees has been provided by officials, the mode choice-related calculations have been made only for this campus. First, it has been found that 14% of the personnel consists of vulnerable road users (cyclists and pedestrians). The same percentage of employees commuted by public transport (Guy Mannaerts, 2013). Then, based on KU Leuven staff commute survey (2011), around 57% of respondents prefer using their private car to come to work. The remaining 15% travels to work as a car passenger. Table 7 represents the number of personnel per category who arrives at and leaves the campus by the different commuting types.

Table 7 Daily commuting of the simultaneously active Gasthuisberg personnel

<table>
<thead>
<tr>
<th>Personnel category</th>
<th>Car driver (57%)</th>
<th>Cyclists/pedestrians (14%)</th>
<th>Public transport users (14%)</th>
<th>Car passenger (15%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>doctors</td>
<td>391</td>
<td>96</td>
<td>96</td>
<td>103</td>
</tr>
<tr>
<td>nurses</td>
<td>406</td>
<td>100</td>
<td>100</td>
<td>107</td>
</tr>
<tr>
<td>the remaining shift staff</td>
<td>45</td>
<td>11</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>the remaining office hours staff</td>
<td>1616</td>
<td>397</td>
<td>397</td>
<td>425</td>
</tr>
</tbody>
</table>
In Table 7 and Table 8, the division of personnel per mode choice has been calculated by multiplying the number of staff members and the percentage of the commuting type mentioned at the beginning of this chapter.

Table 8 Daily commuting of not simultaneously active Gasthuisberg personnel

<table>
<thead>
<tr>
<th>Personnel category</th>
<th>Car driver (57%)</th>
<th>Cyclists/pedestrians (14%)</th>
<th>Public transport users (14%)</th>
<th>Car passenger (15%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>doctors</td>
<td>391</td>
<td>96</td>
<td>96</td>
<td>103</td>
</tr>
<tr>
<td>nurses</td>
<td>1217</td>
<td>299</td>
<td>299</td>
<td>320</td>
</tr>
<tr>
<td>the remaining shift staff</td>
<td>135</td>
<td>33</td>
<td>33</td>
<td>35</td>
</tr>
<tr>
<td>the remaining office hours staff</td>
<td>1616</td>
<td>397</td>
<td>397</td>
<td>425</td>
</tr>
</tbody>
</table>

4.3 Pellenberg campus

According to the information provided by one of the webpages of the University Hospitals, the Pellenberg campus has around 200 beds of which 180 beds are permanently occupied (“Health Sciences campus Gasthuisberg | UZ Leuven,” n.d.). The visiting hours in this campus start at 11h00-20h00.

The number of visits has been calculated using the following formula:

\[1.79 \times 180 \approx 322 \]

In 2013, the number of employees was equal to 891. Table 9 illustrates the division of the total personnel by category during the year.

Table 9 The number of personnel per year for the Pellenberg campus

<table>
<thead>
<tr>
<th>Category</th>
<th>In total</th>
</tr>
</thead>
<tbody>
<tr>
<td>doctors</td>
<td>29</td>
</tr>
<tr>
<td>nurses</td>
<td>1.9 \times 200 = 380</td>
</tr>
<tr>
<td>the remaining staff</td>
<td>891 - (29 + 380) = 482</td>
</tr>
<tr>
<td>the remaining office hours staff</td>
<td>482 - 48 = 434</td>
</tr>
<tr>
<td>the remaining shift staff</td>
<td>482 \times 0.1 \approx 48</td>
</tr>
</tbody>
</table>

Calculations presented in Table 10 made to calculate the number of hospitalizations in the Pellenberg campus.
Table 10 The total number of hospitalizations in the Pellenberg campus

<table>
<thead>
<tr>
<th></th>
<th>In a year</th>
<th>Daily basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>resident patient</td>
<td>$63885 \times \left(\frac{200}{1995} \right) \approx 6404$</td>
<td>$\frac{6404}{365 - 119} \approx 26$</td>
</tr>
<tr>
<td>hospitalizations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>outpatient</td>
<td>$99711 \times \left(\frac{200}{1995} \right) \approx 9996$</td>
<td>$\frac{9996}{365 - 119} \approx 41$</td>
</tr>
<tr>
<td>hospitalizations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Therefore, the distribution of personnel working simultaneously and not simultaneously has been shown in the Table 11.

Table 11 The calculation of the simultaneously and not simultaneously active personnel in the Pellenberg campus

<table>
<thead>
<tr>
<th>Category</th>
<th>Maximum number of personnel members simultaneously active at a specific moment of the day in the hospital during a working day</th>
<th>Number of personnel members active in the hospital during a working day (not necessarily simultaneously)</th>
</tr>
</thead>
<tbody>
<tr>
<td>doctors</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>other personnel (office hours staff)</td>
<td>$482 - 48 = 434$</td>
<td>434</td>
</tr>
<tr>
<td>nurses (shift staff)</td>
<td>$\frac{380}{4} = 95$</td>
<td>$95 \times 3 = 285$</td>
</tr>
<tr>
<td>other personnel (shift staff)</td>
<td>$\frac{48}{4} = 12$</td>
<td>$12 \times 3 = 36$</td>
</tr>
<tr>
<td>total</td>
<td>570</td>
<td>784</td>
</tr>
</tbody>
</table>

4.4 Sint-Rafael and Sint-Pieter campus

Due to the fact that both campuses are in close proximity of each other, the information was gathered as a total for the two campuses. The visiting hours at the campuses start from 11h00 to 20h00. The number of beds was equal to 295, including 265 permanently occupied beds. The number of visits during one day calculated as follows:

$$1.79 \times 265 \approx 474$$

The annual number of employees was equal to 1315 people, which was found as follows:

$$8892 \times (295/1995) \approx 1315$$

Table 12 illustrates the division of the total personnel number per category during the year.
Table 12 The number of personnel per year for the Sint-Rafael and Sint-Pieter campus

<table>
<thead>
<tr>
<th>Category</th>
<th>In total</th>
</tr>
</thead>
<tbody>
<tr>
<td>doctors</td>
<td>107</td>
</tr>
<tr>
<td>nurses</td>
<td>$1.9 \times 295 \approx 560$</td>
</tr>
<tr>
<td>the remaining staff</td>
<td>$1315 - (107 + 560) = 648$</td>
</tr>
<tr>
<td>the remaining office hours staff</td>
<td>$648 - 64 = 584$</td>
</tr>
<tr>
<td>the remaining shift staff</td>
<td>$648 \times 0.1 \approx 65$</td>
</tr>
</tbody>
</table>

Table 13 shows the number of multi and single-day hospitalizations made during one day.

Table 13 The total number of hospitalizations in the Sint-Rafael and Sint-Pieter campuses

<table>
<thead>
<tr>
<th></th>
<th>In a year</th>
<th>Daily basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>resident patient</td>
<td>$63885 \times \left(\frac{295}{1995}\right) \approx 9446$</td>
<td>$\frac{9446}{365 - 119} \approx 38$</td>
</tr>
<tr>
<td>hospitalizations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>outpatient</td>
<td>$99711 \times \left(\frac{295}{1995}\right) \approx 14744$</td>
<td>$\frac{14744}{365 - 119} \approx 60$</td>
</tr>
<tr>
<td>hospitalizations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 14 shows the number of simultaneously and not simultaneously active personnel during one working day at the Sint-Rafael and Sint-Pieter campuses.

Table 14 The calculation of the simultaneously and not simultaneously active personnel in the Sint-Rafael and Sint-Pieter campuses

<table>
<thead>
<tr>
<th>Category</th>
<th>Maximum number of personnel members simultaneously active at a specific moment of the day in the hospital during a working day</th>
<th>Number of personnel members active in the hospital during a working day (not necessarily simultaneously)</th>
</tr>
</thead>
<tbody>
<tr>
<td>doctors</td>
<td>107</td>
<td>107</td>
</tr>
<tr>
<td>other personnel (office hours staff)</td>
<td>$647 - 65 = 582$</td>
<td>582</td>
</tr>
<tr>
<td>nurses (shift staff)</td>
<td>$\frac{560}{4} = 140$</td>
<td>$140 \times 3 = 420$</td>
</tr>
<tr>
<td>other personnel (shift staff)</td>
<td>$\frac{65}{4} \approx 16$</td>
<td>$16 \times 3 = 48$</td>
</tr>
<tr>
<td>total</td>
<td>845</td>
<td>1157</td>
</tr>
</tbody>
</table>

To sum up, the data related to the commuting behaviour of personnel by different mode choices is joined in a summary Table 15 for further people’s plans generation.
Table 15 Distribution of arriving and leaving Gasthuisberg personnel by mode

<table>
<thead>
<tr>
<th>Time (arriving)</th>
<th>Transport mode</th>
<th>Doctors</th>
<th>Nurses</th>
<th>The remaining shift staff</th>
<th>The remaining office hours staff</th>
</tr>
</thead>
<tbody>
<tr>
<td>6h00</td>
<td>car driver</td>
<td></td>
<td>136</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cyclists</td>
<td></td>
<td>34</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PT-users</td>
<td></td>
<td>34</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>car passenger</td>
<td></td>
<td>36</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8h30</td>
<td>car driver</td>
<td>391</td>
<td></td>
<td></td>
<td>1616</td>
</tr>
<tr>
<td></td>
<td>cyclists</td>
<td>96</td>
<td></td>
<td></td>
<td>397</td>
</tr>
<tr>
<td></td>
<td>PT-users</td>
<td>96</td>
<td></td>
<td></td>
<td>397</td>
</tr>
<tr>
<td></td>
<td>car passenger</td>
<td>103</td>
<td></td>
<td></td>
<td>425</td>
</tr>
<tr>
<td>14h00</td>
<td>car driver</td>
<td></td>
<td>135</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cyclists</td>
<td></td>
<td>33</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PT-users</td>
<td></td>
<td>34</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>car passenger</td>
<td></td>
<td>35</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>22h00</td>
<td>car driver</td>
<td></td>
<td>135</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cyclists</td>
<td></td>
<td>33</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PT-users</td>
<td></td>
<td>34</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>car passenger</td>
<td></td>
<td>35</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time (leaving)</th>
<th>Doctors</th>
<th>Nurses</th>
<th>Other personnel (shifts)</th>
<th>Other personnel (not in shifts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6h00</td>
<td>car driver</td>
<td>135</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cyclists</td>
<td>33</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PT-users</td>
<td>34</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>car passenger</td>
<td>35</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>14h00</td>
<td>car driver</td>
<td>136</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cyclists</td>
<td>34</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PT-users</td>
<td>34</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>car passenger</td>
<td>36</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>17h30</td>
<td>car driver</td>
<td>391</td>
<td></td>
<td>1616</td>
</tr>
<tr>
<td></td>
<td>cyclists</td>
<td>96</td>
<td></td>
<td>397</td>
</tr>
<tr>
<td></td>
<td>PT-users</td>
<td>96</td>
<td></td>
<td>397</td>
</tr>
<tr>
<td></td>
<td>car passenger</td>
<td>103</td>
<td></td>
<td>425</td>
</tr>
<tr>
<td>22h00</td>
<td>car driver</td>
<td></td>
<td>135</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>cyclists</td>
<td></td>
<td>33</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PT-users</td>
<td></td>
<td>34</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>car passenger</td>
<td></td>
<td>35</td>
<td>4</td>
</tr>
</tbody>
</table>
5. SIMULATION

This stage of the thesis initially aims at the simulation of the Leuven traffic model by means of MATSim. In order to simulate such a large case as Leuven, it was necessary to understand how MATSim works and what kind of processes are happening before, during and after the simulations. At the beginning of this chapter, the software, its modules, components and files needed to run MATSim are described. Afterwards, different networks have been generated, executed and analyzed in order to investigate the operations allowed when using MATSim.

5.1 MATSim software, overview

MATSim is an agent-based simulation model that aims at providing a framework to simulate large agent-based traffic models. In this model, every person is considered to be an agent who has its own values, attributes and plans, which are usually built according to real-life survey data. MATSim consists of five execution steps which are shown in Figure 12.

![Building blocks in MATSim](Marcel Rieser, 2010)

The software demands initial input data which contains the information related to the population, network and other files included into the simulation (described in Section 5.2). Initial data is used by the mobility simulation (in Figure 12 shown as mobsim), according to the parameters mentioned by the user in the configuration file (Section 5.2).

All the plans performed during the simulation are being evaluated by a scoring module. Scoring is implemented in MATSim in order to compare the plans (giving agents the opportunity to try different schedules) and to let the modules know that all the initiated agents plans are completely executed.

As for the replanning block, its goal is to optimize agents’ plans. For instance, making a person leave home earlier or making a person choose a different route.

The output produced at the end of the simulation can be analyzed. For example, by extracting all the data regarding the number of vehicles entering/leaving one link, it is possible to calculate the volume of the traffic flow.

The software is a popular traffic simulator, since it is used by traffic modelers all over the world. However, it has the most evident disadvantage for non-
professionals. The program can only run the private car traffic (Marcel Rieser, 2010). Nevertheless, the literature study proved that it is possible to extend the software and support different transport modes. In this research, the public-transport (PT) module is needed in order to achieve the goals identified initially in Section 2.2. Hence, in order to simulate the traffic model, the software should include the following set of files, which are described in detail in section 5.2:

- A network that includes links available for public transport vehicles
- A file describing those vehicles
- Public transport schedule-related data
- Daily plans

In general, MATSim has the following list of features:

- Car traffic and public transport simulations
- Open source tool
- Can be used to simulate different network sizes, for instance, simple network with one person or to simulate large scenario for a region
- Detailed information can be specified in all input files (sections 5.2 and 5.3)
- Providing detailed output with description of all events occurred during the simulation

As mentioned in the list of features, the software only supports simulation with a road-network for cars and public transport traffic simulation. However, agents with non-car modes, such as walking and cycling, are teleported from one location to another (Marcel Rieser, 2010). The duration of these teleportations is based on the start and end times defined by the calculations described later in Section 5.2.2. The actual departure and arrival events are still written to the log file, so that they can be further analyzed.

All input data should be in a XML format specified by MATSim. XML (eXtensible Markup Language) is a language used to code data in a format which can be read by both computers and programmers (“XML,” 2015).

5.2 Data requirements

The software uses a set of files needed for the simulation. To enable running MATSim, all the input data can be grouped in three categories:

- Demand data
- Supply data
- Configuration parameters

The demand data category includes a population file which contains initiated plans every agent has and includes activity type, activity time, mode choice and activity location (coordinates), gender, person id and employment status. The supply data category requires information about the network such as road type,
road length, the number of nodes and links, capacity, volume of traffic flows, speeds and number of lanes per link.

Not all files are required for a MATSim simulation. For some simple simulations, only the files containing the information regarding the population, people’s daily plans and description of network are required. For instance, if the simulation should contain only the simulation of people who are commuting by car, only the files network.xml, plans.xml and config.xml are required and there is no need to set up the vehicle.xml, because car parameters are automatically included in MATSim, and schedule.xml is not needed as well. In contrast, to run PT simulation, it is necessary to include those files which can be skipped in a car simulation. Hence, PT simulation requires an extra module which in turn requires the files mentioned before.

The following sections describe which codes the input files need in order to successfully run the MATSim simulation.

5.2.1 Configuration file (config.xml)

Configuration needs to be done before the simulation. The file, in most sources named as config.xml, is aimed at building the connection between MATSim and the user. According to A. Effendi (2014), the configuration file allows a user to specify which modules he wants to see in his simulation in order to run both simple and more complicated scenarios, such as public transportation. Mobility simulation is used to support both private cars and public transport. Other settings like coordinates systems, simulation type etc. can also be defined within this configuration file (Code 1).

```xml
<config>
  <module name="global">
    <param name="randomSeed" value="4711" />
    <param name="coordinateSystem" value="Atlantis" />
    <param name="numberOfThreads" value="12" />
  </module>

  <module name="network">
    <param name="inputNetworkFile" value="&INBASE;/network.xml" />
  </module>

  <module name="plans">
    <param name="inputPlansFile" value="&INBASE;/plans.xml" />
  </module>

  <module name="scenario">
    <param name="useTransit" value="true" />
    <param name="useVehicles" value="true" />
  </module>

  <module name="qsim">
    <param name="startTime" value="00:00:00" />
    <param name="endTime" value="30:00:00" />
    <param name="snapshotperiod" value="00:00:00"/>
  </module>
</config>
```
Building traffic models using freely available data | 44
<param name="transitModes" value="pt" />
</module>

<module name="changeLegModes">
<param name="modes" value="car,pt" />
</module>
</config>

Code 1 Config.xml

Code 1 shows that at the beginning of the file the paths to the location of the input and output files. The number of threads is the parameter that indicates how many cores the simulation can use to handle events (MATSim User’s guide, 2013).

One of the modules is called ‘controller’. This module is responsible for building the connection between all other modules and makes sure that the simulation is running. The module contains the following parameters. Output directory specifies the path where the results are written. Particularly, in the config file it is necessary to specify the iteration 0 as the first iteration, since the iteration 0 contains the event log file where the simulation output is built according to the initiated plans-preferred intentions of an agent. In case of non-specified iteration #0, it is not possible to see the simulation results based on preferred intentions. The settings lastIteration allows the user to specify the amount of iterations that need to be performed. Iteration means one repetition of the scenario. In this research, 20 iterations were specified. For analysis the iteration #0 and #20 are taken. Every iteration allows to find an optimal route (if there are choices) for a person or different departure time from home in case of congestion.

Furthermore, the settings contain an option to define the end time of the simulation and an event file format. In addition, the module has the mobsim public interface which enables mobility simulations and plans execution. The parameter extracts the plans specified in plans.xml and executes them on the network. Moreover, for the simulation, the QSim public class is being chosen, because this class is about executing activities, legs and different modes. In other words, this class is responsible for the moving of vehicles and persons on the network. The start and end time mean the time when the first event starts and the last event ends. Module scenario defines if transit should be used in the simulation or not. The parameters useTransit and useVehicle allow to include transit and transit vehicles into the simulation. By using the two values ‘true’ and ‘false’, these options can be chosen or not respectively.

Furthermore, it is necessary to specify the type and duration of every activity in the configuration file. In Code 1, different activity names are shown. Moreover, activity priority defines the level of importance of the activity type. Activity minimal duration defines the minimum time a person spends on this activity, for instance, home activity has a different minimal duration than shop activity. As for the typical duration, a user is allowed to specify a typical time, for example,
of leisure duration (e.g. visiting friends vs shopping). In addition, opening time indicates how early a person can start this activity. Latest start time indicates how late a person can start the activity. It is not necessary to fill in Earliest end time, since it is enough to specify the end time of the activity in plans. Closing time is obligatory to be mentioned since this time is the signal to the simulation to stop this activity. For example, the closing time of office can be the signal to stop the working activity.

Leg can be defined as a route from one location to another, having one transport mode assigned. Thus, change leg mode means the probability that a person changes the mode on one leg.

In addition, Code 1 shows the set of parameters, such as maximum agent plan memory size, what gives the number of plans per agent where 0 means infinity. The user guide recommends a plan size of 5. This number is close to reality since on average, a person usually has around five activities per day (MATSim User’s guide, 2013). TimeAllocationMutator probability means the probability that an agent obtains new activity starting and end times. The reroute parameter modifies the routes by means of calculating the least expensive route. The parameter enables to find the shortest and fastest path. BestScore means an opportunity to select the plan having the highest score (scoring parameter is described in Section 5.1).

5.2.2 Population file (plans.xml)

The MATSim plans file describes the population and its travel demand. Each person should have his own unique id and a set of plans (minimum one selected). Each plan includes acts and legs. Acts consists of one travelling goal, for instance "home", and one person can perform different activity types during one day, for example, “home”, “work” and “home” again, but not many of them. Software limits the number of activities that can be performed by a person up to five, since this number is close to reality. Besides type, each activity should have a coordinate (location) on the network, which is a coordinate-pair (x, y), and an end-time. During the simulation, all the activities are automatically being assigned to the nearest links, which are specified in the network.xml file (described in the next section). It is also possible to assign the link numbers manually. Code 2 shows a code snippet of the plans.xml file. According to the manual, the last activity should not contain an end time. This is reasonable, since the last home activity is normally the same activity as the first home activity in the next day. Legs between activities are routes which need a mode type, but no information regarding the route is allowed in the plans file. MATSim determines the route itself.
Besides the car-based trips, the software allows to simulate non-car trips, for example walking or cycling. To simulate non-car plans, MATSim requires to have car plans and then it is necessary to duplicate the plans and switch the modes to non-car (Marcel Rieser, 2010). However, practice shows that duplication is not necessary. As it has been mentioned, simulation does not support walking and cycling as transport modes, but still walking people and cyclists are teleported from the start to the end of the trip. The duration of such trips is calculated by multiplying the distance between start and end point of a trip with the speed of pedestrians or/and cyclists.

5.2.3 Network file (network.xml)

Along with the configuration and plans files, the network.xml is a mandatory file required by the software. Network files are XML files which contain links and nodes where traffic on the road and railways are going. The nodes describe the coordinate/location of the points (x, y) which play the role of the start and the end of a link. Each node has its own id, which can be specified by a number and/or letters. Nodes generated in the network.xml file are shown in Code 3.
Code 3 Nodes and links in the network.xml

To handle and orient in the network easier (also in other input files such as schedules.xml), each link is assigned a specific id. For example, if a link is located between the nodes with id 1 and 3, a link has a number 13. In case of a link has also a lane in the opposite direction, it is possibly to assign the number 31 to this link.

In addition, some extra link attributes should be specified. For instance, a user can identify the capacity of every link, how many vehicles can go on a link per one hour. Moreover, it is also to specify length of every link, the maximum speed a car can drive on this link and the number of lanes per link; in the network file these attributes are defined as “freespeed” and “permlanes” respectively. Links have some constraints regarding maneuvers. For example, overtaking, speed changing or lane changing maneuvers are not possible. Start and end points of the links are the only places where vehicles can be included/excluded into/from the traffic flow. As for the type of transport that can be assigned on a link, the network file allows to specify the transport mode per link.

To simulate PT in MATSim, some extra files are required. The following section is dedicated to the public transport simulation principles and the files that need to be created in order to run a simulation with public transport as a mode choice.

5.3 Public transport simulation in MATSim

The software currently supports only a road-network and it does not allow users to generate a railway or pedestrian network.

To run PT, it is important to create a schedule file, where the information regarding the route, stop facilities and arrival/departure time of a bus or train are specified. Besides a schedule file, it is necessary to define the parameters of the public transport modes. To add these modes to the simulation is possibly by creating a vehicle file with the description of the vehicle parameters.

The following sections describe in detail how the schedule and vehicle files should look like.

5.3.1 Schedule file (schedule.xml)

This file is important when PT is simulated, since it allows to specify information regarding transit schedules, routes and stop locations (shown in Code 4). First, the network should contain the bus stop locations for PT. These stops are the places where agents can get on the transit vehicle, switch between vehicles and get off the vehicle. Bus stops have an id and coordinates on the network.
Moreover, by referring all the bus stops to links a user can make transit vehicles depart and arrive at the stops according to the routes.

Second, the transit routes should be generated. A transit route is a specific path that a transit vehicle follows. For example, a bus starts going from bus stop #1 located in one part of the network, passes other stops which are spread over the network and arrives at the final stop #208. The route has the set of all the links where mentioned bus stops are located. One transit line (in this research) has two routes going in both directions.

Moreover, departure and arriving time need to be specified in the schedule file. Departure time means at what time a transit vehicle starts the trip. Every stop location has a set of departure and arrival times for every vehicle. Arrival Offset means the trip duration from one stop to the next where this offset was defined. For instance, if a bus has a Departure Time equal to 17h00 at bus stop #G and the next bus stop #H has an arrival Offset equal to 00:50:00, it means that a vehicle arrives at stop #H 50 minutes after departure at bus stop #G. In addition, the schedule file contains information regarding the route profile. A route profile contains different link id’s the bus is using.

```
<transitSchedule>
  <transitStops>
    <stopFacility id="1" x="100" y="1000" name="street" linkRefId="12"/>
    <stopFacility id="2" x="2500" y="1000" name="work to" linkRefId="34"/>
    <stopFacility id="3" x="2500" y="1050" name="work from" linkRefId="43"/>
    <stopFacility id="4" x="100" y="1050" name="street" linkRefId="21"/>
  </transitStops>
  <transitLine id="Blue Line">
    <transitRoute id="1to2">
      <transportMode>bus</transportMode>
      <routeProfile>
        <stop refId="1" departureOffset="00:00:00"/>
        <stop refId="2" arrivalOffset="00:55:00"/>
      </routeProfile>
      <route>
        <link refId="12"/>
        <link refId="23"/>
        <link refId="34"/>
      </route>
      <departures>
        <departure id="01" departureTime="07:30:00" vehicleRefId="bs_1"/>
      </departures>
    </transitRoute>
  </transitLine>
  <transitLine id="Back Line">
    <transitRoute id="3to4">
      <transportMode>bus</transportMode>
    </transitRoute>
  </transitLine>
</transitSchedule>```

A case study in Leuven | 49
Building traffic models using freely available data

Code 4 Schedule.xml

In addition, MATSim automatically generates a bus driver person while simulating PT.

This is not the only file needed to simulate PT in MATSim. As it has been mentioned above, in order to run PT it is necessary to specify the vehicle parameters in the vehicle.xml file, which is described in the following section.

5.3.2 Vehicles file (vehicles.xml)

As shown in Code 5, every vehicle type should have its own id, with specification of what kind of PT is supposed to be (e.g. big buses, small buses, small trains, big trains, mini-vans). In this research, only trains and buses are chosen for PT simulations. Along with the name of a mode, there should be mentioned how many seats and standing placing a vehicle contains. Furthermore, the file must include information about the length of a vehicle, because the term vehicle can refer to multiple vehicles in reality, for example, a train with several wagons should be specified as one vehicle.

Code 5 Vehicle’s parameters in vehicles.xml file
The following sections are dedicated to network generations in MATSim. First some simple scenarios with different transport modes and plans are simulated. Afterwards, the small area of Leuven, including the train station, hospital, different mode types, population and other parameters, is simulated.

5.4 Testing of small scenarios

This part of the thesis is dedicated to learning how to operate MATSim by means of generating small network scenarios. All the networks are based on the Atlantis coordinate system, where the coordinate values are equal to meters, for example, if the coordinate has the value 70000,0 it means 70000 meters, or 70 kilometers. In addition, all the coordinates are defined on the x and y axis:

- X=horizontal axis
- Y=vertical axis

The following sections are dedicated to the small scenarios in which different modes and agent plans are tested. Every section consists of a network’ scheme, a description of the network parameters and a description of the output.

5.4.1 Simulating different modes

The network in this scenario (further network #1) has a straight line with four nodes and two activity locations: home and work. The simulation consists of one person who is commuting by four different modes (bus, train, car or bike). In the simulation, the home-work-home activity pattern has been used.

Figure 13 shows a general description of the network, such as nodes location, number and direction of the links connected the nodes between each other. Links’ id’s have been described in Section 5.2.3.

![Figure 13 Network #1](image)

The following sections are describing the simulation of the network #1 with the different transport modes that were included in the simulation.

After the simulation, the event log file has been read and analyzed. Beside some expected results, the analysis also showed some logical differences.

5.4.1.1 Bus mode. Long home and work location parts

For the first experiment, the home location part is equal to 1000 meters – this is not that long distance, but further in the text such a scenario is called long location parts. In Figure 14 it is shown that the coordinates of the home location
part-nodes #1 (x=0, y=1000) and #2 (x=1000, y=1000) are 1000 meter away from each other. Meanwhile, the work location part nodes #3 (x=31000, y=1000) and #4 (x=32000, y=1000) are located in 1000 meters from each other as well.

![Network #1. Long home and work location parts](image)

**Figure 14** Network #1. Long home and work location parts

Event log files show that a person ends his home activity at 07h15 (26100.0sec in event log) in the morning and starts the walking transit. After approximately 23 minutes, the person arrives at the bus stop and starts waiting for the bus. At the same time (since a bus does not need to wait too long after picking one person up) somewhere in the region of 08h01 (28801.0sec), a bus with a person departures from the bus stop #1 and keeps going to the bus stop #2, which is located close to the work location.

To reach the nearest bus stop a person needs to walk from his home location. In this scenario, the distance between the house and the bus stop is equal to 890 meters according to the coordinates. In contrast, the event file shows that the person has travelled 1158 meters which is 268 meters longer than it was expected to be. This difference is around 20%. The same phenomenon has been revealed in analyzing the travel distance walked by the person from bus stop #2 to his work location, where the walking distance was approximately 23% higher than expected. Initially, when the distance between the bus stop and the work place was identified as 800 meters because the coordinates of the work location (x=31900, y=1000) and bus stop #2 (x=31100, y=1050) were defined, meanwhile the event log file shows that a person walked from the bus stop to his work location 1042 meters.

In this network the latest start time of the work activity was defined at 9h00. The output showes that thr person arrives at the work location on time at 8h58.

The duration of the work activity is equal to 8h06, which seems not realistic. If a person starts his work activity at 8h58 and ends at 17h00, it is in total 8h02 that the person really worked. Probably, the minimal activity duration, which defined in the configuration file as 8h00, has more influence during the calculating of the duration, end time of the activity and starting walk transit from the location to the bus stop, whatever the start and end activity time in reality is.
After the work activity, the person makes a trip back to home. Leaving the office at 17h00, the person walks 1042 meters to the nearest bus stop to catch the bus going to his home location. The transit walk duration was equal to 21 minutes, which allowed that person to get on the bus that departed at 18h00.

On the way back from work to home, the person spent around 37 minutes going on the bus from bus stop #3 to bus stop #4, the same time as when he went from home to work location. Afterwards, the person went from the bus stop to home by walking and after 23 minutes (at 19h00) he arrived and started the home activity.

5.4.1.2 Bus mode. Short home and work location parts

In the second simulation, the home and work locations have been changed from 1000 meters to 20 meters. All the events made by the person have been repeated like in the first experiment. The only difference between the results was that the travel time was shorter due to the fact of shorter travel distances the person had to travel.

The phenomenon of the extended travel distance a person passed remained stable. Despite the fact that the home and work location were equal to 20 meters, the travelled distance from home to the first bus stop was equal to 10 meters on x axis and 50 meters on y axis. The output showed that a person walked around 66 meters, what can be caused by the fact that the different coordinate levels as it has been shown in Figure 15.

Figure 15 Network #1. Short home and work location parts

To summarize the events obtained during the simulation, all the events that occurred are summarized in Table 16 (see the files and the output in the folder ‘network1-bus’ long and short location parts respectively).
Table 16 Event logs produced after two simulations

<table>
<thead>
<tr>
<th>Event</th>
<th>Long location parts/event time</th>
<th>Short location parts/event time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person leaves home/starts walking to the bus stop</td>
<td>26100 (7h15)</td>
<td>26100 (7h15)</td>
</tr>
<tr>
<td>Person arrives at the bus stop in the home location/starts waiting for a bus</td>
<td>27491 (7h38)</td>
<td>26180 (7h16)</td>
</tr>
<tr>
<td>Person enters the bus</td>
<td>28801 (8h01)</td>
<td>27001 (7h30)</td>
</tr>
<tr>
<td>Person arrives at the bus stop in the work location/starts walking to work</td>
<td>31039 (8h37)</td>
<td>29168 (8h06)</td>
</tr>
<tr>
<td>Person starts work activity</td>
<td>32290 (8h58)</td>
<td>29250 (8h07)</td>
</tr>
<tr>
<td>Person ends work activity/starts walking to the bus stop</td>
<td>61200 (17h00)</td>
<td>61200 (17h00)</td>
</tr>
<tr>
<td>Person arrives to the bus stop</td>
<td>62451 (17h20)</td>
<td>62451 (17h20)</td>
</tr>
<tr>
<td>Person enters the bus</td>
<td>64801 (18h00)</td>
<td>63001 (17h30)</td>
</tr>
<tr>
<td>Person arrives at the bus stop in the home location/starts walking to home</td>
<td>67039 (18h37)</td>
<td>65168 (18h06)</td>
</tr>
<tr>
<td>Person starts home activity</td>
<td>68430 (19h00)</td>
<td>65248 (18h07)</td>
</tr>
</tbody>
</table>

As can be seen, the event types are not different between the networks where home and work locations are short and long. The only difference is that in the second scenario where locations are short, the time, which a person spends on the walking from home/work location to the bus stop is shorter. In all the cases, a person is doing the same activities.

5.4.1.3 Train mode

The train mode is included into the simulation as a part of the PT simulation. All the inputs are generated according the same principles as used for the bus simulations. The results showed that the software can simulate the train, since a person can get on and off the train. All the results can be found on the disk in the folder ‘network1-train-IN.output_TRAIN_LONG_1000’.

5.4.1.4 Car mode

To simulate the car mode, only two files besides the configuration file were needed to generated the plans and network (on the disk, see the folder ‘network1-car-IN.output_CAR_LONG_1000’). For running the simulation, the same network described in Section 5.4.1.1. was used. Work and home locations are long as shown in Figure 14. One person is included into the simulation and that person could only use the car. The results of the simulation are presented in Table 17.
**Table 17** Network #1. Results/car

<table>
<thead>
<tr>
<th>Event</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A person ends his home activity</td>
<td>26100 (7h15)</td>
</tr>
<tr>
<td>A person enters a car</td>
<td>26100 (7h15)</td>
</tr>
<tr>
<td>A person enters link #12</td>
<td>26100 (7h15)</td>
</tr>
<tr>
<td>A person leaves link #12</td>
<td>26101 (7h15)</td>
</tr>
<tr>
<td>A person enters link #23</td>
<td>26101 (7h15)</td>
</tr>
<tr>
<td>A person leaves link #23</td>
<td>28263 (7h51)</td>
</tr>
<tr>
<td>A person enters link #34</td>
<td>28263 (7h51)</td>
</tr>
<tr>
<td>A person leaves a car</td>
<td>28335 (7h52)</td>
</tr>
<tr>
<td>A person starts work activity</td>
<td>28335 (7h52)</td>
</tr>
<tr>
<td>A person ends work activity</td>
<td>61200 (17h00)</td>
</tr>
<tr>
<td>A person enters a car</td>
<td>61200 (17h00)</td>
</tr>
<tr>
<td>A person enters link #43</td>
<td>61201 (17h01)</td>
</tr>
<tr>
<td>A person leaves link #43</td>
<td>61274 (17h02)</td>
</tr>
<tr>
<td>A person enters link #32</td>
<td>61274 (17h02)</td>
</tr>
<tr>
<td>A person leaves link #32</td>
<td>63436 (17h37)</td>
</tr>
<tr>
<td>A person enters link #21</td>
<td>63436 (17h37)</td>
</tr>
<tr>
<td>A person leaves link #21</td>
<td>63509 (17h38)</td>
</tr>
<tr>
<td>A person enters link #12</td>
<td>63509 (17h38)</td>
</tr>
<tr>
<td>A person leaves a car</td>
<td>63581 (17h39)</td>
</tr>
<tr>
<td>A person starts home activity</td>
<td>63581 (17h39)</td>
</tr>
</tbody>
</table>

It can be concluded that the agent performs his activities successfully using a car as a transportation mode.

5.4.1.5 Bike mode

As it has been planned, testing a non-car mode is being used on the same network. The network is the same as for the car and bus. The results (on the disk, see the folder 'network1-bike-IN.output_BIKE_LONG_20') of the simulation are presented in the following Table 18.
Table 18 Network #1. Results/bike

<table>
<thead>
<tr>
<th>Event</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A person ends his home activity</td>
<td>26100 (7h15)</td>
</tr>
<tr>
<td>A person enters link #12</td>
<td>26100 (7h15)</td>
</tr>
<tr>
<td>A person leaves link #12</td>
<td>26100 (7h15)</td>
</tr>
<tr>
<td>A person enters link #34</td>
<td>36049 (10h00)</td>
</tr>
<tr>
<td>A person leaves link #34</td>
<td>36049 (10h00)</td>
</tr>
<tr>
<td>A person starts his work activity</td>
<td>36049 (10h00)</td>
</tr>
<tr>
<td>A person ends his work activity</td>
<td>61200 (17h00)</td>
</tr>
<tr>
<td>A person enters link #34</td>
<td>61200 (17h00)</td>
</tr>
<tr>
<td>A person leaves link #34</td>
<td>61200 (17h00)</td>
</tr>
<tr>
<td>A person enters link #12</td>
<td>71149 (19h46)</td>
</tr>
<tr>
<td>A person starts his home activity</td>
<td>71149 (19h46)</td>
</tr>
</tbody>
</table>

It can be seen that it is possible to simulate a non-car mode in MATSim. The person is reaching activity locations by bike, which is proved by the event log and appropriate time spent on travelling from home to work and from work to home locations. There is no information regarding the longest links #23 and #32: the simulation does not show the moment when a person is following these big links because a person is teleported.

5.4.1.6 U-turns and U-form bus stations

A U-turn (shown in Figure 16) is the maneuver which looks like the letter U (“U-turn,” 2015). During this maneuver, drivers make a rotation of 180° to change their direction, for instance if a driver decides to turn back because has to follow another route due to traffic congestion and for some other reasons.

![Figure 16 Example of a U-turn](image)

U-turns are often performed on many roads all over the world. In this thesis, it is important (since in real traffic drivers make such turns quite often) to understand if setting up U-turns on the network in MATSim is possible or not in order to learn the concept and to include it into other traffic models in the future.
Technically, it was not possible to make the curve between two links as it is shown in Figure 16. The program does not allow to generate U-turns. According to Rieser (2010), it is not needed because such links may never be part of a least-cost path. This opinion is supported by the fact that MATSim does not have the option to generate U-turns. However, it is necessary to find out whether a person is allowed to turn back in case of an emergency or planned movement. To check this out, the home location has been placed on link #23 instead of #12 as in the all other scenarios. For this scenario, the network with short home and work locations has been used (see Figure 15).

Table 19 shows the results (on the disk see the folder ‘network1-u-turns-U-turns_car-car’), which proved that a person can make a turn in the place where the nodes are located.

**Table 19** Results/U-turns test

<table>
<thead>
<tr>
<th>Event</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A person ends his home activity</td>
<td>26100 (7h15)</td>
</tr>
<tr>
<td>A person enters link #23</td>
<td>26100 (7h15)</td>
</tr>
<tr>
<td>A person enters the car</td>
<td>26100 (7h15)</td>
</tr>
<tr>
<td>A person leaves link #23</td>
<td>26101 (7h15)</td>
</tr>
<tr>
<td>A person enters link #34</td>
<td>26101 (7h15)</td>
</tr>
<tr>
<td>A person leaves link #34</td>
<td>26102 (7h15)</td>
</tr>
<tr>
<td>A person starts his work activity</td>
<td>26102 (7h15)</td>
</tr>
<tr>
<td>A person ends his work activity</td>
<td>61200 (17h00)</td>
</tr>
<tr>
<td>A person enters link #34</td>
<td>61200 (17h00)</td>
</tr>
<tr>
<td>A person leaves link #34</td>
<td>61201 (17h00)</td>
</tr>
<tr>
<td>A person enters link #43</td>
<td>61201 (17h00)</td>
</tr>
<tr>
<td>A person leaves link #43</td>
<td>61203 (17h01)</td>
</tr>
<tr>
<td>A person enters link #32</td>
<td>61203 (17h01)</td>
</tr>
<tr>
<td>A person leaves link #32</td>
<td>63365 (17h36)</td>
</tr>
<tr>
<td>A person enters link #23</td>
<td>63365 (17h36)</td>
</tr>
<tr>
<td>A person leaves the car</td>
<td>65526 (18h12)</td>
</tr>
<tr>
<td>A person starts his home activity</td>
<td>65526 (18h12)</td>
</tr>
</tbody>
</table>

As can be seen, on the way home, a person does not follow link #21 and #12 to reach his home location which is located on link #23, but turns on link #23 right after he passed node #2. Hence, it can be concluded that a person can make a turn but in the area of nodes, not on the links itself.
In addition, a lot of bus stations have a form similar to U-turns (Figure 17). It is interesting to know if it is possible to simulate traffic including public transport departing and arriving at such stations. The scheme of the network shows that U-turns are generated as a result of making links which start and end at the same coordinates. In other words, link starts and ends at the same node as it is shown in Figure 17.

To include this turn into the network, some network modifications have been made in the network.xml file:

- The number of nodes have been limited to two, one for the home location part and the other for the work location part
- In total, four links have been built

![Figure 17 Network #1. Bus station in the form of circle](image)

The following Table 20 presents the results after the PT simulation with use of the U-form stations in the network. The sign ‘+’ means that the event mentioned in the left column is performed.

<table>
<thead>
<tr>
<th>Events performed by a person</th>
<th>Possibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaving/entering location by a person</td>
<td>+</td>
</tr>
<tr>
<td>Transit walking to/from the bus stop</td>
<td>+</td>
</tr>
<tr>
<td>Waiting for a bus</td>
<td>+</td>
</tr>
<tr>
<td>Entering/leaving a bus</td>
<td>+</td>
</tr>
<tr>
<td>Start/ending an activity</td>
<td>+</td>
</tr>
<tr>
<td>Events performed by a bus</td>
<td>Possibility</td>
</tr>
<tr>
<td>Bus departs from a bus stop</td>
<td>+</td>
</tr>
<tr>
<td>Bus arrives at another bus stop accordingly to the route</td>
<td>+</td>
</tr>
<tr>
<td>Bus waits at the bus stop</td>
<td>+</td>
</tr>
<tr>
<td>Bus enters/leaves links</td>
<td>+</td>
</tr>
</tbody>
</table>

The output shows that the network where the U-turns were constructed did not have any problems, since buses departures and arrivals at the bus stops happened according to the schedule. Moreover, there were no problems with a person’s plans. The event log file showed that a person is performing his homework-home activities without any limitations.
5.4.1.7 Other experiment

In this experiment the coordinates of nodes do not match the link length. For example, the link length between node #2 and node #3 has been changed from 30000 meters to 30 meters in the network.

As a result (folder `network1-other experiments-do_not`), a bus entered this link and left it with the time which suited to the bus speed and distance correctly. Due to the short link length buses are going through the whole network faster than in case if the link length was equal to 30000 meters and matched the coordinates of then nodes where the link is located. Other differences were not noticed.

5.4.2 Simulating walking

In this scenario (further network #2) the main goal is to find out how an agent behaves in case walking to work takes less time than taking the bus. The network consists of four nodes and six links with a link length of 30000 meters between nodes #2 and #3 (Figure 18). Only one person is included to this scenario. One bus is running on the links #12, #23, #34, #43, #32 and #21.

![Figure 18 Network #2](image)

The results (on the disk see the folder `network2`) showed that the transit walk from the home location to the work location is possible and the events are presented in Table 21.
Table 21 Network #2. Results

<table>
<thead>
<tr>
<th>Event</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person ends his home activity</td>
<td>26100 (7h15)</td>
</tr>
<tr>
<td>Person departs from link #12 by walk</td>
<td>26100 (7h15)</td>
</tr>
<tr>
<td>Person arrives at his work location</td>
<td>30531 (8h28)</td>
</tr>
<tr>
<td>Person starts his work activity</td>
<td>30531 (8h28)</td>
</tr>
<tr>
<td>Person ends his work activity</td>
<td>61200 (17h00)</td>
</tr>
<tr>
<td>Person departs from link #34</td>
<td>61200 (17h00)</td>
</tr>
<tr>
<td>Person arrives on link #12</td>
<td>65631 (18h13)</td>
</tr>
<tr>
<td>Person starts his home activity</td>
<td>65631 (18h13)</td>
</tr>
</tbody>
</table>

According to the event log, there is no information regarding the departure and arrival times on links #23 and #32. This is due to the fact that a person is being teleported from one location to another, and that walking legs are not mapped on the road network.

Moreover, the results showed that the bus is going properly and according to the bus schedule which has been pre-defined in the schedule.xml file. However, the person ignored the bus and preferred walking directly to the work location.

5.4.3 Switching two buses

The network in this scenario (further network #3) has a straight line, contains six nodes, eight bus stops and two bus routes which do not interact with each other. To reach the work location, the person has to switch buses in the middle of the network between node #3 and node #4 as shown in Figure 19. The first bus departs at bus stop #1, goes to bus stop #2 and comes back from bus stop #7 to bus stop #8. The second bus departs from bus stop #3 to #4, then goes from bus stop #5 to #6. The question is if a person can switch buses or not. On this network, switching buses is possible on links #34 and #43.

Figure 19 Network #3
The results (on the disk see the folder ‘network3’) prove that a person can switch the buses, since to reach the destination, either home or work, a person goes to the nearest bus stop from where the bus with the needed destination departs. Table 22 contains the results gathered during the simulation.

**Table 22** Network #3. Results

<table>
<thead>
<tr>
<th>Event</th>
<th>Time sec (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person ends his home activity/starts walking to the bus stop</td>
<td>26100 (7h15)</td>
</tr>
<tr>
<td>Person arrives at bus stop #1 in the home location/starts waiting for a bus</td>
<td>26100 (7h15)</td>
</tr>
<tr>
<td>Person enters bus #1</td>
<td>27901 (7h45)</td>
</tr>
<tr>
<td>Person arrives at bus stop #2/start walking to bus stop #3</td>
<td>28136 (7h48)</td>
</tr>
<tr>
<td>Person arrives at bus stop #3</td>
<td>28292 (7h51)</td>
</tr>
<tr>
<td>Person enters bus #2</td>
<td>30001 (8h20)</td>
</tr>
<tr>
<td>Person arrives at bus stop #4/start walking to the work location</td>
<td>30294 (8h25)</td>
</tr>
<tr>
<td>Person starts his work activity</td>
<td>31545 (8h45)</td>
</tr>
<tr>
<td>Person ends his work activity/start walking to the bus stop</td>
<td>61200 (17h00)</td>
</tr>
<tr>
<td>Person arrives at bus stop #5</td>
<td>62451 (17h21)</td>
</tr>
<tr>
<td>Person enters bus #2</td>
<td>63601 (17h40)</td>
</tr>
<tr>
<td>Person arrives at bus stop #6/start walking to bus stop #7</td>
<td>63836 (17h44)</td>
</tr>
<tr>
<td>Person arrives at bus stop #7</td>
<td>63992 (17h46)</td>
</tr>
<tr>
<td>Person enters bus #1</td>
<td>65401 (18h10)</td>
</tr>
<tr>
<td>Person arrives at bus stop #8 in the home location/starts walking to home</td>
<td>65694 (18h15)</td>
</tr>
<tr>
<td>Person starts his home activity</td>
<td>66945 (18h35)</td>
</tr>
</tbody>
</table>

It can be seen that the results show how a person takes bus #1, reaches the bus stop in the middle of the network and then walks to another bus stop in order to take the bus going to the work location. Normally, the event log contains information regarding the walking distance, between bus stops or the walk from the location to the bus stop. In this output, the distance of walking for switching the bus stops on links #34 and #43 have been mentioned as “NaN”, which means non-available number. MATSim developers explain this by not storing the route length for all the modes except the car, because of inconsistencies in route length calculations. Route length is not always updated when MATSim calculates the optimal decision in every iteration, thus sometimes NaN appears in the results file.
5.4.4 Simulating multi-modal trips

This scenario (further network #4) has the network (Figure 20) that consists of two parts, which do not connect with each other. To reach the work location, a person has to go to the train station by car and then switch mode. Hence, the main question that should be answered after the simulation is if a person can switch modes or not. To answer this question, the first part of the network does not have any PT facilities, but rather is dedicated to the car. To get to the train station, which is located on links #56 and #65, a person has to reach the train station by car (on the disk see the folder ‘network4’).

![Network #4 Diagram](image)

**Figure 20** Network #4

Results are presented in the following Table 23. As can be seen from the output, a person is not taking the car, but prefers walking to his work location.

**Table 23** Network #4. Results

<table>
<thead>
<tr>
<th>Event</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person ends his home activity</td>
<td>26100 (7h15)</td>
</tr>
<tr>
<td>Person walks to the work location</td>
<td>26100 (7h15)</td>
</tr>
<tr>
<td>Person arrives at the work location</td>
<td>43417 (12h03)</td>
</tr>
<tr>
<td>Person starts work activity</td>
<td>43417 (12h03)</td>
</tr>
<tr>
<td>Person ends work activity/person starts walking to the home location</td>
<td>61200 (17h00)</td>
</tr>
<tr>
<td>Person arrives at the home location</td>
<td>78517 (21h48)</td>
</tr>
<tr>
<td>Person starts his home activity</td>
<td>78517 (21h48)</td>
</tr>
</tbody>
</table>

The results showed that a person cannot switch modes. As it can be seen, a person is not taking a car as it has been planned in the input data. Instead of this, a person prefers walking directly to the work location. Thus, the simulation with car and train transport modes did not succeed, probably due to the fact that a car should be parked somewhere in the region of station. However, switching two buses was successful in the network 4 scenario, therefore it can be concluded that switching modes in MATSim demands more attention and definitely opens another question to discuss for further research.
5.4.5 Network with link length zero included

The network in this scenario (further network #5) is a straight line, contains two persons who are leaving their home at the same time and have a home-work-home activity. Car mode choice has been chosen for this network. There are six nodes on the network and the distance between nodes #3 and #4 is equal to 0 meter (Figure 21). The main goal of the simulation is to see how the link with length 0 meters influences on the whole simulation. The capacity on each link is defined as three vehicles per hour.

![Figure 21 Network #5](image)

The following Table 24 shows the results after the simulation of the network #5 and contains comparison of events happened to both persons and the influence of the link with 0 meters in length on their behavior. The first two columns represent the results showed by the initial “intended” plans and the last two columns represent the results after twenty iterations (on the disk, the files are in the folder ‘network5’).

<table>
<thead>
<tr>
<th>Event</th>
<th>Iteration 0</th>
<th>Iteration last</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person ends home activity</td>
<td>26100 (7h15)</td>
<td>26100 (7h15)</td>
</tr>
<tr>
<td>Person enters a car</td>
<td>26100 (7h15)</td>
<td>26100 (7h15)</td>
</tr>
<tr>
<td>Person enters link #12</td>
<td>27300 (7h35)</td>
<td>26100 (7h15)</td>
</tr>
<tr>
<td>Person leaves link #12</td>
<td>27301 (7h35)</td>
<td>26101 (7h15)</td>
</tr>
<tr>
<td>Person enters link #23</td>
<td>27301 (7h35)</td>
<td>26101 (7h15)</td>
</tr>
<tr>
<td>Person leaves link #23</td>
<td>27532 (7h38)</td>
<td>26332 (7h19)</td>
</tr>
<tr>
<td>Person enters link #34</td>
<td>27532 (7h38)</td>
<td>26332 (7h19)</td>
</tr>
<tr>
<td>Person leaves link #34</td>
<td>27533 (7h38)</td>
<td>26333 (7h19)</td>
</tr>
<tr>
<td>Event Description</td>
<td>Time 1</td>
<td>Time 2</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Person enters link #45</td>
<td>27533  (7h38)</td>
<td>26333 (7h19)</td>
</tr>
<tr>
<td>Person leaves link #45</td>
<td>27750 (7h42)</td>
<td>26550 (7h22)</td>
</tr>
<tr>
<td>Person enters link #56</td>
<td>27750 (7h42)</td>
<td>26550 (7h22)</td>
</tr>
<tr>
<td>Person leaves a car</td>
<td>27822 (7h43)</td>
<td>26622 (7h23)</td>
</tr>
<tr>
<td>Work activity starts</td>
<td>27822 (7h43)</td>
<td>26622 (7h23)</td>
</tr>
<tr>
<td>Work activity ends</td>
<td>61200 (17h00)</td>
<td>61200 (17h00)</td>
</tr>
<tr>
<td>Person enters a car</td>
<td>61200 (17h00)</td>
<td>61200 (17h00)</td>
</tr>
<tr>
<td>Person enters link #56</td>
<td>61200 (17h00)</td>
<td>61200 (17h00)</td>
</tr>
<tr>
<td>Person leaves link 56</td>
<td>62401 (17h20)</td>
<td>61201 (17h00)</td>
</tr>
<tr>
<td>Person enters link #65</td>
<td>62401 (17h20)</td>
<td>61201 (17h00)</td>
</tr>
<tr>
<td>Person leaves link #65</td>
<td>62474 (17h21)</td>
<td>61274 (17h01)</td>
</tr>
<tr>
<td>Person enters link #54</td>
<td>62474 (17h21)</td>
<td>61274 (17h01)</td>
</tr>
<tr>
<td>Person leaves link #54</td>
<td>62691 (17h25)</td>
<td>61491 (17h04)</td>
</tr>
<tr>
<td>Person enters link #43</td>
<td>62691 (17h25)</td>
<td>61491 (17h04)</td>
</tr>
<tr>
<td>Person leaves link #43</td>
<td>62691 (17h25)</td>
<td>61492 (17h04)</td>
</tr>
<tr>
<td>Person enters link #32</td>
<td>62692 (17h25)</td>
<td>61492 (17h04)</td>
</tr>
<tr>
<td>Person leaves link #32</td>
<td>62923 (17h28)</td>
<td>61723 (17h08)</td>
</tr>
<tr>
<td>Person enters link #21</td>
<td>62923 (17h28)</td>
<td>61723 (17h08)</td>
</tr>
<tr>
<td>Person leaves link #21</td>
<td>62996 (17h30)</td>
<td>61796 (17h09)</td>
</tr>
<tr>
<td>Person enters link #12</td>
<td>62996 (17h30)</td>
<td>61868 (17h11)</td>
</tr>
<tr>
<td>Person leaves a car/starts the home activity</td>
<td>63068 (17h31)</td>
<td>61868 (17h11)</td>
</tr>
</tbody>
</table>
As can be seen, the link with a length of 0 meters influences the simulation results significantly. In the initial iteration #0, the results showed that both persons leave their home at the same time. While person #2 is going through all the links alone, reaches his work location and starts his work activity, only after this moment person #1 starts entering link #12 in his car. The same situation happens on the way back. Both agents leave their work locations at the same time, but only person #2 is going on the entire network and reaches his home location alone. Meanwhile, person #1 is waiting in his car at the work location and starts moving only after (according to the results around 8 minutes) person #2 has started his home activity.

In marked contrast, after 20 iterations the results showed that during the simulation it was taken into account the early departure from the home location for one of the persons. Instead of 7h15 person 1 leaves his home at 6h48, starts his work activity earlier and before person 2 leaves his home.

In addition, despite the fact that link #12 has enough capacity, a person is not able to enter link #12 before another person has started his work activity. However, during the testing of the same network but without the link of a length equals to zero, it was mentioned that both persons enter link #12 at the same time and only one of them starts waiting to enter rest of the network while another one is getting to his work location (on the disk, see the results in the folder ‘network5-comment’).

To conclude, the link with length zero is an unwanted link for the network. First of all, such a link is not long enough to hold a vehicle, and second, the capacity of the link before cannot be too large, since it makes all the vehicles arrive at the link with length zero at the same time. Hence, such a link makes playing with large link capacity problematic.

5.4.6 Network with the low capacity link included

This scenario (further network #6) has the network that consists of four nodes with home-work-home activity. Two persons are included into the simulation. The link between the home and work location parts has a low capacity (no more than one car per hour). Four transport modes - car, bus, train and bike have been included in the scenario.

![Figure 22 Network #6](image)
**Car mode**

The simulation includes the network (Figure 14) with two persons. The car is the transport mode. The results are presented in Table 25 (on the disk, see the folder 'network6-car-network6_car').

**Table 25** Network #6. Results/car

<table>
<thead>
<tr>
<th>Event</th>
<th>Person 1</th>
<th>Person 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person ends his home activity</td>
<td>26100 (7h15)</td>
<td>26100 (7h15)</td>
</tr>
<tr>
<td>Person enters a car</td>
<td>26100 (7h15)</td>
<td>26100 (7h15)</td>
</tr>
<tr>
<td>Person leaves link #12</td>
<td>26104 (7h15)</td>
<td>26100 (7h15)</td>
</tr>
<tr>
<td>Person leaves link #23</td>
<td>26105 (7h15)</td>
<td>26101 (7h15)</td>
</tr>
<tr>
<td>Person enters link #23</td>
<td>31863 (8h51)</td>
<td>28263 (7h51)</td>
</tr>
<tr>
<td>Person enters link #34</td>
<td>31863 (8h51)</td>
<td>28263 (7h51)</td>
</tr>
<tr>
<td>Person leaves a car</td>
<td>31935 (8h52)</td>
<td>28335 (7h52)</td>
</tr>
<tr>
<td>Person starts work activity</td>
<td>31935 (8h52)</td>
<td>28335 (7h52)</td>
</tr>
<tr>
<td>Person ends work activity</td>
<td>61200 (17h00)</td>
<td>61200 (17h00)</td>
</tr>
<tr>
<td>Person enters a car</td>
<td>61200 (17h00)</td>
<td>61200 (17h00)</td>
</tr>
<tr>
<td>Person leaves link #43</td>
<td>61276 (17h01)</td>
<td>61274 (17h01)</td>
</tr>
<tr>
<td>Person enters link #32</td>
<td>61276 (17h01)</td>
<td>61274 (17h01)</td>
</tr>
<tr>
<td>Person leaves link #32</td>
<td>67036 (18h37)</td>
<td>63436 (17h37)</td>
</tr>
<tr>
<td>Person enters link #21</td>
<td>67036 (18h37)</td>
<td>63436 (17h37)</td>
</tr>
<tr>
<td>Person leaves link #21</td>
<td>67109 (18h38)</td>
<td>63509 (17h38)</td>
</tr>
<tr>
<td>Person enters link #12</td>
<td>67109 (18h38)</td>
<td>63509 (17h38)</td>
</tr>
<tr>
<td>Person leaves link #12</td>
<td>67181 (18h39)</td>
<td>63581 (17h40)</td>
</tr>
<tr>
<td>Person leaves a car</td>
<td>67181 (18h39)</td>
<td>63581 (17h40)</td>
</tr>
<tr>
<td>Person starts his home activity</td>
<td>67181 (18h39)</td>
<td>63581 (17h40)</td>
</tr>
</tbody>
</table>

The results showed that persons ended their home activity and entered their cars at the same time. However, person 2 entered link #12 earlier, since the link #23 can accommodate only 1 vehicle. Thus, person #1 had to wait till a person #2 has started his work activity, since the link capacity was reached. Besides, after 20 iterations the simulation has taken into account the fact of early departure of person 1. The results performed after 20 iterations can be found on the disk.

**Bike mode**

In this simulation, two persons are included and bikes have been chosen as a mode choice. The following Table 26 shows the results. All the codes and the output results are included in the folder ‘network6-bike-network6bike’ on the disk.
Table 26 Network #6. Results/bike

<table>
<thead>
<tr>
<th>Event</th>
<th>Person 1</th>
<th>Person 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person ends his home activity</td>
<td>26100 (7h15)</td>
<td>26100 (7h15)</td>
</tr>
<tr>
<td>Person departs by bike/link #12</td>
<td>26100 (7h15)</td>
<td>26100 (7h15)</td>
</tr>
<tr>
<td>Person enters link #34</td>
<td>27504 (7h38)</td>
<td>27504 (7h38)</td>
</tr>
<tr>
<td>Person leaves link #34</td>
<td>27504 (7h38)</td>
<td>27504 (7h38)</td>
</tr>
<tr>
<td>Person starts his work activity</td>
<td>27504 (7h38)</td>
<td>27504 (7h38)</td>
</tr>
<tr>
<td>Person ends work activity</td>
<td>61200 (17h00)</td>
<td>61200 (17h00)</td>
</tr>
<tr>
<td>Person enters link #34</td>
<td>61200 (17h00)</td>
<td>61200 (17h00)</td>
</tr>
<tr>
<td>Person leaves link #34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Person enters link #12</td>
<td>62604 (17h23)</td>
<td>62604 (17h23)</td>
</tr>
<tr>
<td>Person starts his home activity</td>
<td>62604 (17h23)</td>
<td>62604 (17h23)</td>
</tr>
</tbody>
</table>

It can be seen that despite the fact that link # 23 and # 32 have the capacity of one vehicle, both persons are going through all the links together and without delays. Therefore, it can be concluded that if a person is using a bike as a mode choice, a person is not following the rules of the simulation, and as it has been mentioned in chapter 5.2.2, MATSim is transferring a person from home to work locations. In addition, in the output there is no information about the longest part of the road-link #23, #32, since MATSim does not show that a person is going on these long links on a bike.

**Bus mode**

The next network includes the simulation of PT. Three persons start their home activity at the same time. At every bus stop only two buses with a capacity of two passengers depart. One of them departs before arriving of persons at the bus stop, so only two buses are available for three persons (one bus has a capacity of two people). The main idea of the simulation is to see what happens if the bus is full and there is no extra bus which can accommodate the rest of the passengers. The following Table 27 represents the results (on the disk see network6-network6bus_3pers1veh).

Table 27 Network #6. Results/bus

<table>
<thead>
<tr>
<th>Event</th>
<th>Person 1</th>
<th>Person 2</th>
<th>Person 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person ends his home activity</td>
<td>26100 (7h15)</td>
<td>26100 (7h15)</td>
<td>26100 (7h15)</td>
</tr>
<tr>
<td>Person arrives at bus stop #1 by walk</td>
<td>27491 (7h38)</td>
<td>27491 (7h38)</td>
<td>27491 (7h38)</td>
</tr>
<tr>
<td>Person enters a bus</td>
<td>-</td>
<td>28202 (7h50)</td>
<td>28201 (7h50)</td>
</tr>
<tr>
<td>Person leaves a bus at bus stop #2</td>
<td>-</td>
<td>30441 (8h27)</td>
<td>30440 (8h27)</td>
</tr>
<tr>
<td>Person arrives at work location and starts work activity</td>
<td>-</td>
<td>31692 (8h48)</td>
<td>31691 (8h48)</td>
</tr>
<tr>
<td>Person ends work activity</td>
<td>-</td>
<td>61200 (17h00)</td>
<td>61200 (17h00)</td>
</tr>
<tr>
<td>Person arrives at bus stop #3 by walk</td>
<td>-</td>
<td>62451 (17h20)</td>
<td>62451 (17h20)</td>
</tr>
</tbody>
</table>
Person enters the bus - 63002 (17h30) 63001 (17h30)
Person arrives at bus stop #4 - 65241 (18h07) 65240 (18h07)
Person leaves the bus/starts walking to home location - 65241 (18h07) 65240 (18h07)
Person starts his home activity - 66632 (18h30) 66631 (18h30)

The results showed that all three persons ended their home activity at the same time and arrived at the bus stop at the same time. Therefore, only two of them (#2 and #3) could get on the bus in time and completed their plans successfully. Person #1 could not get on the bus, since there was no extra bus for him. The output results showed that this person was stuck at the bus stop. It can be concluded, that a person cannot be transferred to activity location if there are no vehicles included into the simulation of PT, moreover, according to this output a person does not prefer walking to his work location, but prefers to stay at the bus stop.

**Train mode**

In this network, the train mode is used. There are three persons who leave their home at the same time. There are three trains with a capacity of one person per train. All trains depart with an interval of ten minutes.

The results (see the folder `network6-train-train_6`) showed that if all the vehicles are full of passengers, the rest of the persons are allowed to get on the next train which departs a few minutes later. The starting time of the work activity directly depends on the time of persons arriving at the station, according to the arrival time of the train.

Afterwards, all six networks have been tested, as it was pointed out in Section 2, large Leuven scenario can be simulated according to the skills gathered during simulating the small networks.

### 5.5 Leuven scenario

The Leuven scenario in this thesis is the small model of the real Leuven network. This small scenario is the network, which has four areas located outside the city (on the network these are the A, B, C and D locations) and the city center with nine ‘cells’ inside. On each link in the city center, there are one home and one work location. On each loop in the outskirts there is also one work and one home location. Ten people live in each home location in the city center. On each home location in the outskirts, 25 people are accomodated.

Everybody has the schedule home-work-home activity except those agents visiting the hospital. These agents have the schedule home-work-home-visit-home activity. People who work in the hospital do not have the visit activity.
To simulate this Leuven scenario it is necessary to define which input files needed to be included. First of all, the network.xml should be created according to the scheme of Leuven shown in Figure 23.

Figure 23 Leuven city center with suburbs

Furthermore, the plans.xml file should be generated using the MatsimStubDataGenerator (on the disk, see the folder ‘MatsimStubDataGenerator’). This generator has been created by the transportation behavior research group of IMOB (the Transportation Research Institute, Hasselt University) specifically for this scenario. It helps generating plans.xml with a large amount of agents and avoids typing the code manually. The data generator demands five csv files to fill in:

- Home locations
- Work locations
- Home distribution
• Work distribution
• Schedules

The Home_locations.csv file contains three columns: type, latitude and longitude. As for the type, it has been mentioned there are two types of area defined as a home location: the suburbs and the city center. Suburbs are located in the A, B, C and D areas, while the city center has 24 links inside. Latitude and longitude are the x and y axes where locations are situated.

In the Work_locations.csv file, besides the type of columns mentioned above, there are four additional columns describing the earliest_start_time, latest_start_time, earliest_start_time and latest_end_time of the work activity. According to the data gathered and described in Section 4, the time interval to start a work activity ranges between 08:30:00 and 09:30:00. For the end time of the work activity this interval is between 17:30:00 and 18:00:00. Moreover, those people who work at the hospital (calculations can be found in the following text) have been divided into four categories.

• Shift workers who start working at 06:00:00
• Shift workers who start working at 14:00:00
• Shift workers who start working at 22:00:00
• Regular office hours workers who start working at 08:30:00

Regarding the Home_distribution.csv file, the percentage of people living in the suburbs and the city center should be calculated. In case of the Leuven scenario in this research, in total 340 people were included into the simulation. As mentioned above, 25 people live in every suburb area (25*4=100), and 240 people live on every link in the city center (10*24=240). This means that ten people live on one of the 24 links. Hence, in percentages of amount of people living in the suburbs area is equal to 29% and those living in the city center equals to 71%.

Another file that needs to be filled in in order to generate the plans.xml is the Work_distribution.csv file. There are two types of work: hospital (that means amount of people working in the hospital) and normal (that means the amount of people who work in any other random location except hospital). To spread the total number of living people per type, the data obtained in Section 4 has been used. Hospital type includes percentage of doctors and staff who are working regular office hours. Normal type includes nurses and other employees who work in shifts. Hence, 81% of people work in random locations and 19% work in the hospital.

The Schedules.csv file contains categories (people who work in random locations and people who work in the hospital). One category of hospital workers and one category of workers working in random locations have the schedule home-work-home. One category of those who work in random locations have the schedule home-work-home-visit-home activity.
To run the MatsimStubDataGenerator it is necessary to run the following command:

- java -cp MatsimStubDataGenerator.jar MatsimStubDataGenerator 340 1800 3600 "18:00:00" "20:00:00"

Where:

- 340 - total number of people included into the simulation
- 1800 sec - minimal required default time to get from origin to destination
- 3600 sec - minimum duration of a hospital visit
- 18:00:00 - start of visiting hours
- 20:00:00 - end of visiting hours

To get the output it is necessary to run the following:

- path\output.txt

Afterwards it is possible to save data from txt to the XML format file.

As for the configuration parameters, one more activity type, ‘visit’, has been included. Typical duration is set up as one hour, since the literature review showed that this time is enough for people to make a hospital visit. Moreover, the same duration was set up in the MatsimStubDataGenerator, in order to include this time to the plans.xml. In addition, for PT parameters, transit module includes ‘pt’ parameter name.

In the network, as it has been shown in Figure 24, different modes of transport have been used. There is a train station and a bus stop at every link. Colored lines are the bus lines (BL). For clear observation, the scheme of the city center is shown in Figure 24.
Figure 24 Leuven city center

The simulation of the network was successful and resulted in 16422 events included in the event log, which can be found in the folder ‘Leuven’ on the disk. Since the plans.xml file contains only car as a mode choice, due to generation of schedule.xml it was achieved implementation of PT into the network and possibility to allow agents using buses and trains to reach their destinations in later iterations. The results showed that in the first iterations agents only used their cars. Meanwhile, all the PT modes departure and arrived at the locations according to the schedules.xml file. Vehicles’ id’s are the same as the id’s of agents. In the later iterations it was noticed that all the agents who were supposed to take PT did not do that. Instead of the use of PT agents preferred to walk to their destinations and even avoided car use. Moreover, they did not walk to bus stops or train stations. This observation is similar to the results gathered in the network simulated in Section 5.4.4, where agents were not able to perform multi-modal trips. In addition, according to the results, the work activity of some agents is located in the region of link #3141 and agents start working over there in different shifts and in office hours. Those agents working in random...
locations start their work activities at different parts of the network. Some agents work in the hospitals during different shifts as planned.

For some more tests, congestion effects on the network have been analyzed (see the folder ‘Leuven-congestion’ on the disk). For the entire network, an average capacity of 1000 vehicles per link per hour was specified. In order to provoke and see the effect of congestion, links #4131, #3141, #4142 and #4241 were closed by means of reducing the capacity to 0 vehicles per hour. These links have been chosen, since they were closest to the hospital where 19% of the agents had a fixed working location. The following results were found:

- Closed links do not influence on finishing the home activity of those agents living in the home locations accommodated in the region of these links
- Agents living in the region of closed links cannot do any activities right after they finish their home activities
- Agents whose work location is in the region of closed links are stuck on these links
- Agents whose work location is in the region of closed links cannot start their work activity
- Buses cannot follow these closed links and are being stuck

To sum up, performing activities by agents is significantly decreased by those parts of the network where capacity reduced. Moreover, based on the practice gathered during early simulations it can be safely assumed that this problem does not spread over to non-car modes and trains since those are teleported by the software.
CONCLUSION

This thesis explores the possibilities to develop a traffic model, based on freely available data. Data provided by the University Hospitals of Leuven partially contributed to the Leuven scenario in this thesis and in future research to the SMART-PT project, which goal is to create a self-adaptive public transportation system.

The first part of the research consisted of the literature study, which enabled to get insight in the nature of traffic models, their structure, their benefits and their drawbacks. Therefore, the hospital-related data was collected for further traffic modelling. The main focus in this part of the thesis was to identify the distribution of hospital visitors throughout the day. To begin with, the search was started with personnel arrivals and departures per category: staff working during regular office hours (doctors and 90% of administrative personnel) and those working in shifts (nurses and 10% of administrative personnel). As for commuting type chosen by personnel, according to the annual report, the biggest percentage of employees is commuting by car (57%). Fifteen percent preferred to travel as a car passenger, while the remaining 28% was divided equally between the use of public transportation and walking and cycling.

Working hours found on the hospital website allowed to determine the time of employees’ arrivals and departures. The total number of hospitalizations allowed to calculate the number of single-day-hospitalizations and consultations in the year 2013, found in the annual report. The average amount of patients arriving and leaving the hospital during one day has been calculated. Regarding those coming to visit patients, the literature study showed the average number of trips per hospital bed in one day, what allowed to calculate the number of daily visits. According to visiting hours, mentioned on the hospital webpage, calculated visit trips were distributed throughout the day. To sum up, gathering freely available data was quite hard due to limited sources. The administration of the hospitals does not cooperate with students and can only provide annual reports with limited information. The annual report should be extended in its information concerning some daily numbers, as calculated in Table 15.

During the second part, the simulations were performed using MATSim. Different scenarios, modes of transport and networks’ characteristics were tested.

In total, six networks were tested and it can be concluded that all the simulations succeeded. As for the first network, the results did show that a person was able to do his activities according to the schedule intended in the plans.xml. During the simulation, different transport modes could be used:

- Car
- Train
- Bus
• Bike

When a person is using the car, train or bus, the event log shows the entire route a person traveled through the network from his origin to his destination. In marked contrast, when a person is going with non-car mode, such as bike, or with non-road based mode, such as the train, the output results show independence of a mode from the network, since a person is being teleported (the same situation occurred in network #2 where walking was analyzed). When a person has to reach the bus stop to take a bus further, a person is making a walking transit as the results show. In addition, testing of u-turns showed that a vehicle can only make a turn in the region of the nearest node, but not on the link itself. The efficiency of this option in MATSim can be determined and explained in future research.

According to the network, the distance between the home location and bus stops is around 20% shorter than the distance walked by a person during his transit. In one of the networks the walking transit distance was shown as “NaN”, which means non-available number. Due to the reason explained in Section 5.4.3., the software creators recommend to develop the model for calculating route length for every specific scenario, what defenetely can become a future research idea.

Network #3 demostrated that switching buses is allowed in MATSim. It was found that a person is able to make a walking transfer to a bus station, then pick up a bus and then switching to another bus on the same link. However, in network #4, switching different modes was not possible. Due to the fact that a car should be parked in the area of train station makes switching car-train modes impossible. Moreover, car mode was replaced by another train and the simulation did not succeed despite the fact that both modes were public transport. As a result, a person just preffered walking to his work location. According to the results gathered in this thesis, it can be concluded that a possibility of network connectivity in case of lanes laying on different levels is under discussion.

In network #5 and #6, the effect of links with length equal to 0 and low capacity link have been tested. It was found that the link with 0 meters in length encourages a person to wait at his home location till the moment another person has started his work activity. The effect of low capacity links resulted in forcing one vehicle to wait while another vehicle has reached its destination as well as the link with length 0 meters. This can influence the early departure time of agents.

After all testing scenarios, the Leuven scenario was simulated. To run it the following set of files was required:

- Config.xml
- Network.xml
- Plans.xml
- Schedules.xml

Building traffic models using freely available data | 76
Vehicles.xml

Plans.xml has been created by means of the MatsimStubDataGenerator. Results showed 16422 events. However, multi-modal trips did not occur.

Initially, it was assumed that agents were not allowed to use PT, because they had a car available for all the activities in their schedule. After the simulation, it was identified that this was not the reason, since the trial to switch car mode to pt mode in the plans of some agents did not succeed and just forced agents to make a transit walk. In the first iterations agents took their cars while in the last iterations, they just preferred walking to their destinations. Such an effect is similar to the one revealed during the simulation of multi-modal trips in Section 5.4.4.

In addition, congestion effects have been analyzed. The results showed that closed links influenced the entire simulation significantly. Those agents working and leaving in the region of closed links could not perform any activities and just made ‘stuck’ activity, that means no movements.
DISCUSSION

The city of interest is Leuven and only a small region containing the center of the city has been taken into account for the research. This limitation has a practical reason: micro-simulation requires a lot of computer resources and detailed simulations are only feasible when the number of individuals is limited.

In this study, only one day (Tuesday or Thursday) of August is used for the simulation, so the effect of the students, that is assumed to generate the main part of the city’s vulnerable road users (e.g. pedestrians or cyclists), can be safely ignored.

Some parts of the city were not modeled in detail: the ‘Interbrew’ site, the large offices named ‘Boerenbond’ in the center and the new office buildings along the railway at the opposite side of the train station. For this study they were assumed to not influence bus operations. However, it can be said that to determine the impact of those locations on the traffic flow would be an interesting field for future research.

One of the problems during the simulations of the Leuven network was considered to be the identification of the effects of multi-modal daily tours of hospital visitors. In reality, their influence on the bus network is rather unknown, since they could choose different modes of transport for the different parts of their journey. For example, one can decide to take the bus to go to work, but walk to a restaurant during the lunch break. In this case, it was important to identify if multi-modal tours are handled in MATSim and to estimate the effect on the demand for bus trips. The fact of impossibility to make multi-modal trips have been proved in this thesis during the simulating small Leuven scenario in this research.

Particularly, it was planned that the third part in this research, the comparison of bus-line profiles, would play a role of the model estimator. However, generating and comparison these bus-line profiles seemed to be meaningless, since multi-model trip could not be included in the simulation.

In conclusion, it can be said that this research topic, ‘Building traffic models using freely available data’, has been approached from different sides. Types of traffic models became familiar based on the knowledge gathered during the literature study. Building and simulating small, but different scenarios have been done. All the results have been analyzed and discussed. The Leuven network itself has also been modelled, using the hospital-related data gathered during the first part of the research. All the results have been analyzed and discussed.
REFERENCES


A case study in Leuven | 81


*MATSim User’s guide*. (2013). Retrieved from matsim.org/docs/userguide


A case study in Leuven | 83


Station Leuven - Google Maps. (n.d.). Retrieved January 13, 2015, from https://www.google.be/maps/place/Station+Leuven/@50.8785794,4.693162,15z/data=!4m2!3m1!1s0x47c1672cad4fc3e7:0x7986b49e27588b77?hl=en


Traffic simulation. (2014, November 22). In Wikipedia, the free encyclopedia. Retrieved from

Building traffic models using freely available data | 84
A case study in Leuven | 85
Auteursrechtelijke overeenkomst

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:

Building traffic models using freely available data

Richting: Master of Transportation Sciences-Mobility Management
Jaar: 2016

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de Universiteit Hasselt.

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt behoud ik als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -, vrij te reproduceeren, (her)publiceren of distribueren zonder de toelating te moeten verkrijgen van de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat de eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt door het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de Universiteit Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de eindverhandeling werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze overeenkomst.

Voor akkoord,

Naumova, Iuliia

Datum: 11/01/2016