Demand-Responsive Collective Transportation including Door-to-Door Services for Mobility Impaired People

Glenn Cich
Hasselt University - IMOB

July 13 2015
Overview

1. Introduction
2. Research
3. Concepts
4. Software
5. Design Ideas
6. Next Steps
1 Work in Progress
2 Main ideas and concepts
3 No implementation yet
4 In the context of SmartPT

Research partially funded by the IWT 135026 Smart-PT : Smart Adaptive Public Transport (ERA-NET Transport III Flagship Call 2013 “Future Travelling”)
Overview

1 Introduction

2 Research
 - General
 - Example

3 Concepts

4 Software

5 Design Ideas

6 Next Steps
General:

1. Modelling *thin flows*
 - Low density regions
 - Elderly and mobility impaired people
2. Modelling feeder services
 - Low density \rightarrow high density
3. Research Questions
 - Are these companies viable?
 - Do these companies need subsidizing?
 - What is the influence on the different prices?
Example: Thin Flows
Example: Thin Flows
Example: Thin Flows
Example: Thin Flows
Example: Bringing/Getting Customers

Glenn Cich (IMOB)
DRT Services
July 13 2015

INSTITUUT VOOR MOBILITEIT
Example: Bringing/Getting Customers

Glenn Cich (IMOB)
Example: Bringing/Getting Customers

User 1
Origin: link 1-2
Destination: 14-19
Departure: 09:00
Arrival: 09:15

User 2
Origin: link 12-13
Destination: 16-21
Departure: 09:25
Arrival: 09:45

User 3
Origin: link 11-12
Destination: 23-24
Departure: 09:30
Arrival: 09:50

Glenn Cich (IMOB)
Example: Bringing/Getting Customers

User 1
Origin: link 1-2
Destination: 14-19
Departure: 09:00
Arrival: 09:15

User 2
Origin: link 12-13
Destination: 16-21
Departure: 09:25
Arrival: 09:45

User 3
Origin: link 11-12
Destination: 23-24
Departure: 09:30
Arrival: 09:50
Example: Bringing/Getting Customers

User 1:
Origin: link 1-2
Destination: 14-19
Departure: 09:00
Arrival: 09:15

User 2:
Origin: link 12-13
Destination: 16-21
Departure: 09:25
Arrival: 09:45

User 3:
Origin: link 11-12
Destination: 23-24
Departure: 09:30
Arrival: 09:50
Example: Bringing/Getting Customers
Example: Bringing/Getting Customers

![Diagram of a network with various nodes and paths, each representing a user's origin, destination, departure, and arrival times.]

- **User 1:**
 - Origin: link 1-2
 - Destination: 14-19
 - Departure: 09:00
 - Arrival: 09:15

- **User 2:**
 - Origin: link 12-13
 - Destination: 16-21
 - Departure: 09:25
 - Arrival: 09:45

- **User 3:**
 - Origin: link 11-12
 - Destination: 23-24
 - Departure: 09:30
 - Arrival: 09:50
Example: Bringing/Getting Customers

User 1
Origin: link 1-2
Destination: 14-19
Departure: 09:00
Arrival: 09:15

User 2
Origin: link 12-13
Destination: 16-21
Departure: 09:25
Arrival: 09:45

User 3
Origin: link 11-12
Destination: 23-24
Departure: 09:30
Arrival: 09:50

INSTITUUT VOOR MOBILITEIT
Example: Bringing/Getting Customers
Overview

1. Introduction

2. Research

3. Concepts
 - Entities
 - Company
 - Customer

4. Software

5. Design Ideas

Next Steps
Entities: Overview

1. **Company**
2. **Customer**
3. **Interactions, e.g.**:
 - Customer books a trip at a company
 - A Company commits a trip to a customer
 - A Company books a trip at another company
 -
Company: Overview

Company

Transport Provider
TripsSequenceComposer

Business Manager

Sub-Companies

Labels

Connection Graph
Solver (VRP)
Company: Responsibilities

1. Represents a real-life business
2. Always provides some kind of transportation
 - Providing own transportation
 - Acting like a broker (make use of other companies to provide trips)
3. Tries to survive
 - With subsidizing
 - Without subsidizing
Company: Transport Provider

1. Entity in the company → providing transport
 - Routing of vehicles
 - Optimizing schedules
 - ...

2. Knows the area that can be served

3. TripSequenceComposer
 - Connection graph
 - Representing the sub contractors of a company
 - e.g. \(A \rightarrow B \): Company \(A \) can ask company \(B \) for help
 - Comes in handy when request of customer falls out of the served region

Solver
- VRP with labels, capacity and time windows
Company: Business Manager

1. Entity in the company → financial situation
 - Cost of a trip
 - Subsidizing
 - Profits
 - ...
Company: Sub-Companies

1. For practical reasons (every company/sub-company can be handled in the same way)

2. Easier to calculate the totals of a company

3. e.g. $I_{DeLijn} = I_{Limburg} + I_{Antwerpen} + I_{VlaamsBrabant} + I_{OostVlaanderen} + I_{WestVlaanderen}$
Company: Labels

1. Terms of services
 - Income category of customer
 - Able/willing to take mobility impaired people
 - ...
Customer: Overview

1. Represents a real-life Person
2. Labels
 - Wheelchair
 - Blindness
 - ...
3. Plans
 - What will I do today/tomorrow?
4. Memory
 - About travel times
 - About experience with different companies
 - ...

Glenn Cich (IMOB)
DRT Services
July 13 2015
17 / 27
Overview

1. Introduction
2. Research
3. Concepts
4. Software
 - Tools
5. Design Ideas
6. Next Steps
Tools:

1. Programming language JAVA
2. MATSim
 - Multi-Agent Transport Simulation
 - TUBerlin
 - Used for the simulation of the agents in the network
3. JANUS
 - UTBM
 - Used for the communication/negotiation between customer(s)/company(ies)
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>Research</td>
<td>Concepts</td>
<td>Software</td>
<td>Design Ideas</td>
<td>Next Steps</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overview</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Research</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Concepts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Software</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Design Ideas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Connection Graph</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transport Request</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Score Function</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Glenn Cich (IMOB)
Connection Graph: Example

currentCompany = \{ Company 1, Company 4, Company 5 \}
Company 1 = \{ Company 2, Company 3 \}
Company 2 = \{ \}
Company 3 = \{ \}
Company 4 = \{ Company 1 \}
Company 5 = \{ \}
Connection Graph: Example

\[
\text{currentCompany} = \{ \text{Company 1, Company 4, Company 5} \}
\]

\[
\text{Company 1} = \{ \text{Company 2, Company 3} \}
\]

\[
\text{Company 2} = \{ \}
\]

\[
\text{Company 3} = \{ \}
\]

\[
\text{Company 4} = \{ \text{Company 1} \}
\]

\[
\text{Company 5} = \{ \}
\]
Transport Request: Overview

1. Conceptual view of a Request

2. \(\langle \text{orig}, \text{dest}, t^P_{\text{orig}}, w_{\text{orig}}, t^P_{\text{dest}}, w_{\text{dest}}, mSet, lSet, \text{scoreFunc} \rangle \)

- \(\text{orig} \) identifies the origin
- \(\text{dest} \) identifies the destination
- \(t^P_{\text{orig}} \in w_{\text{orig}} \) is the preferred departure time
- \(w_{\text{orig}} \) identifies the departure time window
- \(t^P_{\text{dest}} \in w_{\text{dest}} \) is the preferred arrival time
- \(w_{\text{dest}} \) identifies the arrival time window
- \(mSet \) is the set of transportation modes that can be used
- \(lSet \) is the set of labels identifying special requirements (e.g. facilities of support) in order to enable travel
- \(\text{scoreFunc} \) is a function to quantify the quality of proposed solutions in order to allow the responder to return the most appropriate (according to the requester’s requirements) solutions
Transport Request: Example

Customer Company
From A: <Hasselt, Genk, 14:32, [14:15-14:33], 15:01, [14:58:15:05], <Bus>, <Blind>, f(x)>
From B: <Alken, Gent, 17:07, [17:01-17:17], 19:53, [19:50-20:15], <Bus, Train>, <>, f(x)>
From C: <Bilzen, Antwerp, 13:59, [13:40-14:00], 15:01, [14:45-15:05], <Bus, Train>, <Wheelchair>, f(x)>

To D: Possible
10:02 am
To D: Possible
10:03 am
From D: Commit this trip
10:53 am
Fixed: Customer D
10:55 am

To A: Possible
11:02 am
From A: Cancel this trip
11:02 am
Served: Customer D
11:13 am
Fixed: Customer B
11:13 am

To B: Possible
11:13 am
From B: Commit this trip
11:13 am

To C: Possible
11:20 am
From C: Commit this trip
11:20 am

To E: Not Possible
11:55 am

Fixed: Customer B

Customer C
Served: Customer D
11:55 am

Fixed: Customer D
Score Function: Conceptual View
Overview

1. **Introduction**
2. **Research**
3. **Concepts**
4. **Software**
5. **Design Ideas**
6. **Next Steps**
1. Finish this software specification
2. Start the implementation
Questions?

Glenn Cich (IMOB)

DRT Services

July 13 2015