The etherification of glycerol with tert. Butyl ether to produce mono-glycerol tert. Butyl ether

Anke Zimmermann

INTRODUCTION
The etherification of glycerol into oxygen rich compounds that can serve as octane enhancers for fuel is an interesting way to make biodiesel viable.

 Etherification of glycerol:
• With isobutene or tert. butyl alcohol (TBA),
• In presence of an acid catalyst (Amberlyst, Beta Zeolite),
• Mixture of m-, d- and t-GTBE.

m-GTBE is not investigated as gasoline additive yet, despite its high octane number

EXPERIMENTAL

Step 1
Aim: optimization of etherification of glycerol with tert. butyl alcohol
Parameters:
- Reaction time (2 - 6h)
- Temperature (80 - 110°C)
- Catalyst ratio relative to glycerol mass (5 - 10%)

Step 2
Aim: isolation of m-GTBE from GTBE-mixture
Methods:
- Normal distillation
- Vacuum distillation

The etherification was carried out in a batch reactor under 10 atm. N2.

Step 3
Aim: effect of blending of m-GTBE with pure gasoline (mogas 92)
Percentages:
- 2.5 %
- 5 %
- 7.5 %

Beta Zeolite was used as a catalyst.

Step 4
Aim: determination of characteristics gasoline with m-GTBE as additive
Characteristics:
- Octane number (ASTM D2699)
- Oxygen content (ASTM D4815)
- Vapor pressure (ASTM D3945)
- Density (ASTM D1298)
- Boiling range (ASTM D86)

RESULTS

Optimization

Yield = 19.63 + 4.79 \cdot \text{Temperature} = 2.63 \cdot \text{Time} + 1.08 \cdot \text{Catalyst loading} - 1.45 \cdot \text{Temperature} \cdot \text{Catalyst loading} (Coded values only)

Characteristics

DISCUSSION AND CONCLUSIONS

• Optimal yield of m-GTBE: high temperature (110°C)
 low reaction time (2h)
 Temperatures higher than 110°C: more side reactions and lower conversion
 Commercial gasoline + m-GTBE: positive effect on ignition characteristics reduction of CO and hydrocarbon emissions

REFERENCES:

KU LEUVEN