Ongevallenpatronen op verkeerslichtengereguleerde kruispunten

Evelien Polders, Stijn Daniels, Elke Hermans, Tom Brijs, Geert Wets

RA-2015-004

16/04/2015
Niets uit deze uitgave mag worden verveelvoudigd en/of openbaar gemaakt zonder uitdrukkelijk te verwijzen naar de bron.

Dit rapport kwam tot stand met de steun van de Vlaamse Overheid, programma ‘Steunpunten voor Beleidsrelevant Onderzoek’. In deze tekst komen onderzoeksresultaten van de auteur(s) naar voor en niet die van de Vlaamse Overheid. Het Vlaams Gewest kan niet aansprakelijk gesteld worden voor het gebruik dat kan worden gemaakt van de meegedeelde gegevens.

Het Steunpunt Verkeersveiligheid 2012-2015 voert in opdracht van de Vlaamse overheid beleidsondersteunend Wetenschappelijk onderzoek uit over verkeersveiligheid. Het Steunpunt Verkeersveiligheid is een samenwerkingsverband tussen de Universiteit Hasselt, de KU Leuven en VITO, de Vlaamse Instelling voor Technologisch Onderzoek.
Inhoudstafel

Ongevallenpatronen op verkeerslichtengeregeld kruispunten (beknopte versie van het rapport in het Nederlands)..6
Samenvatting..6
1 Inleiding ..7
2 Methode ..7
3 Resultaten..9
 3.1 Ongevallocatie...9
 3.2 Kruispuntenmerken..11
4 Aanbevelingen ..11

Crash Patterns at Signalized Intersections (extended version of the report in English)...13
Summary ..13
1 Introduction ..14
2 Study objective ...15
3 Method ..15
 3.1 Data ..15
 3.1.1 Crash Data ..15
 3.1.2 Intersection Design and Usage Data ...15
 3.2 Signalized Intersection Segments ..16
 3.3 Crash Location Typology ..18
 3.4 Crash Data Analysis ..20
 3.4.1 Logistic Regression Models ..20
4 Results ..20
 4.1 Descriptive Statistics ..20
 4.2 Logistic Regression Results ..22
5 Discussion ..26
6 Conclusions ..28
7 Recommendations ..29
8 Acknowledgements ..29
References ..30
Lijsten (beknopte Nederlandse versie)

Figuur 1: Onderverdeling van een verkeerslichtengeregeld kruispunt in segmenten. 8
Figuur 2: Locatie van de verkeerslichtgeregelde kruispunten opgenomen in dit onderzoek.................. 9

Tabellen (beknopte Nederlandse versie)

Tabel 1: Verdeling van de ongevalstypes over de verschillende kruispuntsegmenten. 10

Lijsten (uitgebreide Engelstalige versie)

Figure 1: Signalized intersection segments. .. 17
Figure 2: Crash location typology. .. 19

Tabellen (uitgebreide Engelstalige versie)

Table 1: Descriptive Statistics.. 21
Table 2: Factors Influencing Probability of Signalized Intersection Crash Types......................... 24
Gebruikte afkortingen (beknopte Nederlandstalige versie)

<table>
<thead>
<tr>
<th>Afkorting</th>
<th>Vertaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWV</td>
<td>Vlaamse overheid - Agentschap Wegen en Verkeer</td>
</tr>
<tr>
<td>FOD</td>
<td>Federale Overheidsdienst</td>
</tr>
</tbody>
</table>

Gebruikte afkortingen (uitgebreide Engelstalige versie)

<table>
<thead>
<tr>
<th>Afkorting</th>
<th>Vertaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>AADT</td>
<td>Annual Average Daily Traffic</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence Interval</td>
</tr>
<tr>
<td>Min</td>
<td>Minimum value</td>
</tr>
<tr>
<td>OR</td>
<td>Odds Ratio</td>
</tr>
<tr>
<td>Ref</td>
<td>Reference Category</td>
</tr>
<tr>
<td>Seg.</td>
<td>Segment</td>
</tr>
<tr>
<td>VRU</td>
<td>Vulnerable Road User</td>
</tr>
</tbody>
</table>

Structuur van het onderzoeksrapport

Dit onderzoeksrapport is opgebouwd uit twee delen. Het eerste deel omvat een beknopte Nederlandstalige versie van het rapport. Deze Nederlandstalige versie is een uitgebreide samenvatting van het onderzoek zodat de lezer een duidelijk overzicht krijgt van de gebruikte methode, de belangrijkste onderzoeksbevindingen en de beleidsaanbevelingen. Het tweede deel bestaat uit een uitgebreide Engelstalige versie van het onderzoek. De Engelstalige versie is een gedetailleerde beschrijving van het onderzoek met een uitgebreide beschrijving van de onderzoeksdoelstelling, methode, resultaten, conclusies en beleidsaanbevelingen.
Ongevallenpatronen op verkeerslichtengeregelde kruispunten (beknopte versie van het rapport in het Nederlands)

Samenvatting

Aanleiding: Verkeerslichten worden op kruispunten geïnstalleerd om bewegingen van verschillende weggebruikers op een veilige, gestructureerde en vlotte manier te laten verlopen. Toch gebeuren nog geregeld ernstige ongevallen op verkeerslichtengeregelde kruispunten.

Doelstelling: In deze studie werd gedetailleerde informatie (ongevallendata en manoeuvrediagrammen) over 1295 ongevallen op 87 kruispunten met verkeerslichten verzameld met als doel een profiel te schetsen van de ongevallen op deze locaties en een aantal typerende kenmerken te benoemen.

Methode: De manoeuvrediagrammen werden gebruikt om de ongevallen in zes verschillende ongevalstypes te delen: kop-staartongevallen, frontale ongevallen, eenzijdige ongevallen, zijdelingse ongevallen, ongevallen ten gevolge van een weefbeweging en ongevallen met ten minste één zwakke weggebruiker. Daarnaast werd deze gedetailleerde ongevalsinformatie ook gebruikt om een ongevalslocatietypologie te ontwikkelen waarbij het verkeerslichtengeregelde kruispunt wordt opgedeeld in 13 typische en gedetailleerde kruispuntsegmenten. Vervolgens werden logistische regressies gebruikt om de relaties tussen de ongevalstypes, hun locatie op bepaalde kruispuntsegmenten, de ongevalsernest en de specifieke eigenschappen van een verkeerslichtengeregelde kruispunt te identificeren.

Resultaten: De resultaten tonen aan dat verkeerslichtengeregelde kruispunten gekenmerkt worden door 4 dominante ongevalstypes: kop-staartongevallen, zijdelingse ongevallen, frontale ongevallen en ongevallen met ten minste één zwakke weggebruiker. Met uitzondering van de kop-staartongevallen, is de ongevalsernest voor deze ongevalstypes ook hoger dan verwacht. Daarnaast blijkt ook dat de ongevalslocatie van deze dominante ongevalstypes gerelateerd is aan bepaalde kruispuntsegmenten. Zo vinden kop-staartongevallen vaker plaats voor het kruispuntvlak en op de bypass terwijl zijdelingse en frontale ongevallen frequenter voorkomen op het kruispuntvlak. Het merendeel van de ongevallen met zwakke weggebruikers vindt plaats op de oversteekvoorzieningen na het kruispuntvlak en op de bypass. Behalve een analyse naargelang ongevalslocatie, werd ook nagegaan welk effect specifieke eigenschappen van een verkeerslichtengeregelde kruispunt hebben op de dominante ongevalstypes. Een conflictvrije verkeerslichtenregeling heeft een gunstig effect op ongevallen met zwakke weggebruikers, kop-staart- en frontale ongevallen terwijl een half-conflictvrije regeling leidt tot een stijging in de kans op kop-staartongevallen. Verkeerslichtengeregelde kruispunten met roodlichtcamera's worden gekenmerkt door minder zijdelingse aanrijdingen, minder frontale aanrijdingen en een kleiner aantal ongevallen met zwakke weggebruikers. Daarnaast resulteren roodlichtcamera's ook in een stijging in kop-staartongevallen. De aanwezigheid van een middengleieder leidt tot minder frontale aanrijdingen terwijl een lagere ontwerpsnelheid een gunstige invloed heeft op het totale aantal letselongevallen en ongevallen met zwakke weggebruikers.

Conclusie: Het onderzoek toont aan dat specifieke ongevalstypes gerelateerd zijn aan specifieke locatiesegmenten op en specifieke eigenschappen van een verkeerslichtengeregelde kruispunt. De methode van de ongevalslocatietypologie waarbij het verkeerslichtengeregelde kruispunt wordt opgedeeld in typische en gedetailleerde kruispuntsegmenten biedt waardevolle inzichten in de aard van verkeerslichtengeregelde kruispuntongevallen en de verkeersveiligheidseffecten van het kruispuntontwerp.

Aanbevelingen: Op basis van de resultaten van dit onderzoek kunnen enkele aanbevelingen voor het ontwerp van verkeerslichtengeregelde kruispunten worden geformuleerd. Om het aantal kop-
staartongevallen aan te pakken is het wenselijk dat deze kruispunten en/of de verkeerslichten voldoende herkenbaar en zichtbaar zijn voor naderende bestuurders. Daarnaast kunnen coordinatieverbeteringen tussen opeenvolgende kruispunten met verkeerslichten ook leiden tot minder kop-staartbotsingen. Aangezien zijdelingse en frontale ongevallen vaak het gevolg zijn van roodlichtnegatie of links afslappende bestuurders die geen voorrang verlenen aan het tegemoetkomende verkeer, kunnen deze ongevallen verminderd worden door het kruispunt uit te rusten met een conflictvrije verkeerslichtenregeling of roodlichtcamera’s te plaatsen. Daarnaast kunnen goede zichtafstanden, coordinatieverbeteringen en een optimalisatie van de ontruimingstijd ook resulteren in minder frontale en zijdelingse ongevallen. Een duidelijk wegontwerp dat voor iedere weggebruiker gemakkelijk te begrijpen is (bv. een consistente en ondubbelzinnige fasering voor het linksaf slappend verkeer) leidt tot een harmonisering van het gedrag van weggebruikers en is daarom wenselijk. Doordat bestuurders overstekende zwakke weggebruikers vaak niet opmerken, is het belangrijk dat de overstekkoordinatieverbeteringen goed zichtbaar zijn voor naderende bestuurders. Daarnaast komen conflicten tussen zwakke weggebruikers en gemotoriseerde voertuigen nog steeds frequent voor bij verkeerslichtengereguleerde kruispunten wanneer ze niet volledig beschermd worden door de verkeerslichtenregeling (bv. zwakke weggebruikers hebben dezelfde groen fase als het afslappende verkeer). Daarom is vanuit verkeersveiligheidsoogpunt aan te bevelen dat conflicten met zwakke weggebruikers altijd worden beschermd door de verkeerslichtenregeling.

1 Inleiding

Verkeerslichten worden op kruispunten geïnstalleerd om bewegingen van verschillende weggebruikers op een veilige, gestructureerde en vlotte manier te laten verlopen. Toch gebeuren nog geregeld ernstige ongevallen op lichtengereguleerde kruispunten. We verzamelden informatie over 1295 ongevallen op 87 kruispunten met verkeerslichten met als doel een profiel te schetsen van de ongevallen op deze locaties en een aantal typerende kenmerken te benoemen.

2 Methode

De ongevallenpatronen op verkeerslichtengereguleerde kruispunten werden in dit onderzoek geïdentificeerd en geanalyseerd aan de hand van gedetailleerde informatie over de locatie van het ongeval. Een dergelijke analyse laat toe om de dominante ongevalstypes voor elke locatie op het kruispunt te identificeren en tevens te bepalen of de ongevallen patronen afhankelijk zijn van specifieke infrastructurele eigenschappen. Hiervoor werd het verkeerslichtengereguleerde kruispunt onderscheid in 13 verschillende typesegmenten. Deze onderscheiding werd gebaseerd op bestaande kennis over ongevallen en weggebruikersgedrag op dito kruispunntype. De segmenten werden zodanig gedefinieerd dat de kruispuntplattegrond een generaleerde weergave is van diverse verkeerslichtengereguleerde kruispuntstypes. De kruispuntplattegrond stelt een “maximaal” ontwerp voor, dit is een typische kruispunt lay-out met enkele extra kenmerken die niet noodzakelijk op elk kruispunt aanwezig zijn. Zo is bijvoorbeeld een bypass voor rechts afslappend verkeer toegevoegd. Dit betekent dat er enkel ongevallen op segmenten 11, 12 en 13 geregistreerd worden wanneer het desbetreffende kruispunt uitgerust was met een bypass. Hetzelfde principe is van toepassing op de fietsvoorzieningen. In realiteit komen verschillende types fietsvoorzieningen voor op verkeerslichtengereguleerde kruispunten (fietssuggestiestroom, aanliggend fietspad, vrijliggend fietspad, ongelijkvloerse fietsvoorziening). Dit houdt in dat de figuur een kruispunt met aanliggend fietspad voorstelt, terwijl de werkelijke afstand tussen de fietsvoorziening en de rijstroken voor gemotoriseerd verkeer varieert tussen 0-10 meter. Hetzelfde geldt voor het aantal rijstroken en kruispuntarmen: zowel T-kruispunten als kruispunten met vier of meerdere armen worden voorgesteld door figuur 1.
Om de ongevallen volgens hun locatie op verkeerslichtengeregeld kruispunten te analyseren, was er nood aan gedetailleerde ongevallendata. De nationale FOD-databank kon niet gebruikt worden om deze ongevallendata te verzamelen aangezien deze geen informatie bevat over de precieze ongevalslocatie. Daarom werden verschillende politiezones gecontacteerd die naast de ongevallendata ook de manoeuvrediagrammen systematisch registeren voor ieder ongeval. In totaal werden op deze manier 1295 letsel- en stoffelijke schadeongevallen verspreid over 87 kruispunten verzameld. Alle ongevallen vonden plaats in de periode 2007-2011. Deze data bevatte standaardinformatie over het ongeval zoals het tijdstip, de weersomstandigheden, de lichtgesteldheid, het type betrokken weggebruiker en de ongevalsernest. Daarnaast bevatte de politiedata ook gedetailleerde ongevallendata verzameld. Deze gedetailleerde informatie werd
aangeleverd in de vorm van manoeuvrediagrammen. Een manoeuvrediagram is een schematische voorstelling van alle ongevallen die plaatsvonden op een verkeerslichtengeregeld kruispunt of andere locatie over een bepaalde periode. Het manoeuvrediagram geeft de dominante ongevalstypes op een verkeerslichtengeregeld kruispunt weer, identificeert de manoeuvres die geleid hebben tot deze ongevallen en levert gedetailleerde informatie over de ongevalslocatie op het kruispunt. Naast ongevallendata werden ook nog verkeersintensiteiten en data inzake de kruispuntkenmerken opgevraagd bij de bevoegde districten van het Agentschap Wegen en Verkeer (AWV).

Figuur 2: Locatie van de verkeerslichtgeregelde kruispunten opgenomen in dit onderzoek

3 Resultaten

Op basis van de informatie vervat in de manoeuvrediagrammen werden de ongevallen in zes verschillende ongevalstypes ingedeeld: kop-staartongevallen, frontale ongevallen, eenzijdige ongevallen, zijdelingse ongevallen, ongevallen ten gevolge van een weefbeweging en ongevallen met zwakke weggebruikers. De kop-staart-, zijdelingse, frontale ongevallen en ongevallen met zwakke weggebruikers werden geïdentificeerd als de dominante ongevalstypes aangezien ze 77% van alle ongevallen op verkeerslichtengeregelde kruispunten vertegenwoordigden. Respectievelijk 96%, 74% en 85% van de betrokken weggebruikers bij de kop-staart-, zijdelingse en frontale ongevallen waren gemotoriseerde weggebruikers.

Ongeveer de helft (54%) van de kruispuntongevallen in de steekproef zijn letselongevallen. 10% van de letselongevallen resulteerde in dodelijke of zwaargewonde slachtoffers. De ongevallen met zwakke weggebruikers, frontale aanrijdingen, zijdelingse ongevallen en eenzijdige ongevallen resulteerden vaker in dodelijke en zwaargewonde slachtoffers. Het aandeel lichtgewonde slachtoffers was het hoogste bij de kop-staartaanrijdingen en de ongevallen door een weef-/invoegbeweging. Deze twee ongevalstypes gebeuren meestal bij lagere snelheden waardoor de botsimpact van de aanrijding minder groot is.

3.1 Ongevalslocatie

Een analyse naar ongevalslocatie toonde aan dat de ongevallen gerelateerd zijn aan specifieke locatiesegmenten op het verkeerslichtengeregeld kruispunt. Kop-staartongevallen gebeuren vaker voor het kruispuntvlak (segment 1-3). Dit wijst er op dat deze ongevallen gerelateerd zijn aan variaties in het remgedrag van bestuurders bij een faseverandering naar oranje of rood. Diverse internationale studies identificeerden kop-staartaanrijdingen als de meest voorkomende ongevallen op dit
kruispunttype. Deze studies concludeerden ook dat onoplettend rijgedrag, verschillen in het remgedrag van bestuurders en het aanhouden van een te korte volgasstand ten tijde van de faseverandering de voornaamste oorzaken zijn van kop-staartbotsingen. De bypass wordt ook gekenmerkt door meer kop-staartongevallen. Op deze locatie worden de kop-staartbotsingen waarschijnlijk veroorzaakt door bestuurders die voorrang verlenen aan zwakke weggebruikers op de oversteekvoorziening (segment 12) of stoppen om in te voegen met het tegemoetkomende verkeer (segment 13). Een bijkomende verklaring voor het aantal kop-staartongevallen op deze locatie is de onoplettendheid van achteropkomende voertuigen.

Zijdelingse en frontale ongevallen vinden frequenter plaats op het kruispuntvlak (segment 4-6). Een mogelijke verklaring hiervoor is dat deze ongevalstypes het gevolg zijn van roodlichtnegatie, controleverlies of links afslaan bestuurders die in conflict komen met het tegemoetkomende verkeer.

Het merendeel van de ongevallen met zwakke weggebruikers gebeurt op de oversteekvoorzieningen na het kruispuntvlak (segment 7-9) en in mindere mate op de bypass (segment 12). Over het algemeen besteden bestuurders bij het uitvoeren van de rijtaak meer aandacht aan andere gemotoriseerde weggebruikers dan aan zwakke weggebruikers. Daarnaast komen conflicten tussen zwakke weggebruikers en het gemotoriseerd verkeer nog steeds voor op verkeerslichtengeregeld kruispunten wanneer fieters en voetgangers gelijktijdig groen hebben met het afslaand verkeer.

Tabel 1: Verdeling van de ongevalstypes over de verschillende kruispuntsegmenten.

<table>
<thead>
<tr>
<th>Locatie</th>
<th>Eenzijdige ongevallen (N = 122)</th>
<th>Frontale ongevallen (N = 144)</th>
<th>Zijdelingse ongevallen (N = 211)</th>
<th>Ongevallen met zwakke weggebruikers (N = 268)</th>
<th>Kop-staartongevallen (N = 452)</th>
<th>Ongevallen Lg.v. weefbeweging (N = 98)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment 1 (N=103)</td>
<td>17 (17)</td>
<td>1 (1)</td>
<td>8 (8)</td>
<td>15 (15)</td>
<td>54 (52)</td>
<td>8 (8)</td>
</tr>
<tr>
<td>Segment 2 (N=301)</td>
<td>27 (9)</td>
<td>1 (1)</td>
<td>0</td>
<td>12 (4)</td>
<td>241 (80)</td>
<td>20 (7)</td>
</tr>
<tr>
<td>Segment 3 (N=97)</td>
<td>4 (4)</td>
<td>2 (2)</td>
<td>1 (1)</td>
<td>4 (4)</td>
<td>56 (58)</td>
<td>30 (31)</td>
</tr>
<tr>
<td>Segment 4 (N=214)</td>
<td>5 (2)</td>
<td>33 (15)</td>
<td>62 (29)</td>
<td>67 (31)</td>
<td>35 (16)</td>
<td>12 (6)</td>
</tr>
<tr>
<td>Segment 5 (N=71)</td>
<td>2 (3)</td>
<td>8 (11)</td>
<td>48 (68)</td>
<td>10 (14)</td>
<td>2 (3)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Segment 6 (N=187)</td>
<td>2 (1)</td>
<td>97 (52)</td>
<td>60 (32)</td>
<td>21 (12)</td>
<td>1 (1)</td>
<td>6 (3)</td>
</tr>
<tr>
<td>Segment 7 (N=79)</td>
<td>11 (14)</td>
<td>1 (1)</td>
<td>4 (5)</td>
<td>59 (74)</td>
<td>2 (3)</td>
<td>2 (3)</td>
</tr>
<tr>
<td>Segment 8 (N=62)</td>
<td>18 (29)</td>
<td>0</td>
<td>6 (10)</td>
<td>32 (52)</td>
<td>6 (10)</td>
<td>0</td>
</tr>
<tr>
<td>Segment 9 (N=66)</td>
<td>20 (30)</td>
<td>1 (2)</td>
<td>3 (5)</td>
<td>34 (52)</td>
<td>2 (3)</td>
<td>6 (9)</td>
</tr>
<tr>
<td>Segment 10 (N=36)</td>
<td>6 (17)</td>
<td>0</td>
<td>17 (47)</td>
<td>2 (6)</td>
<td>1 (3)</td>
<td>10 (28)</td>
</tr>
<tr>
<td>Segment 11 (N=8)*</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2 (13)</td>
<td>4 (63)</td>
<td>2 (25)</td>
</tr>
<tr>
<td>Segment 12 (N=33)*</td>
<td>8 (24)</td>
<td>0</td>
<td>0</td>
<td>7 (21)</td>
<td>17 (52)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>Segment 13 (N=38)*</td>
<td>2 (5)</td>
<td>0</td>
<td>2 (5)</td>
<td>3 (8)</td>
<td>31 (82)</td>
<td>0</td>
</tr>
</tbody>
</table>

Waarden tussen () stellen percentages van het rijtotaal voor.
* Het aantal ongevallen in deze 3 segmenten is zeer laag aangezien slechts 29 van de 87 kruispunten zijn uitgerust met een bypass.
3.2 Kruispuntkenmerken

Behalve een analyse naargelang ongevalslocatie, werd ook nagegaan welk effect specifieke eigenschappen van een verkeerslichtengeregeld kruispunt hebben op de dominante ongevalstypes. Een conflictvrije verkeerslichtenregeling heeft een gunstig effect op ongevallen met zwakke weggebruikers, kop-staart- en frontale ongevallen terwijl een half-conflictvrije regeling leidt tot een stijging in de kans op kop-staartongevallen. Verkeerslichtengeregelde kruispunten met roodlichtcamera’s worden gekenmerkt door minder zijdelingse aanrijdingen, minder frontale aanrijdingen en een kleiner aantal ongevallen met zwakke weggebruikers. Daarnaast resulteren roodlichtcamera’s ook in een stijging in kop-staartongevallen. De aanwezigheid van een middengeleider leidt tot minder frontale aanrijdingen terwijl een lagere ontwerpsnelheid een gunstige invloed heeft op het totale aantal letselongevallen en ongevallen met zwakke weggebruikers. Het aantal ongevallen met zwakke weggebruikers ligt hoger op verkeerslichtengeregelde kruispunten met een gemengde verkeersafwikkeling. Deze bevinding is echter sterk gerelateerd aan het aantal zwakke weggebruikers op een locatie en is waarschijnlijk het gevolg van verschillen in de verkeersintensiteiten voor zwakke weggebruikers op de kruispunten in de steekproef. Aangezien er geen intensiteitsdata voor zwakke weggebruikers beschikbaar waren, kon deze hypothese niet worden getest.

4 Aanbevelingen

Om het aantal kop-staartongevallen aan te pakken is het wenselijk dat deze kruispunten en/of de verkeerslichten voldoende herkenbaar en zichtbaar zijn voor naderende bestuurders. Daarnaast kunnen coördinatieverbeteringen tussen opeenvolgende kruispunten met verkeerslichten ook leiden tot minder kop-staartbotsingen.

Aangezien zijdelingse en frontale ongevallen vaak het gevolg zijn van roodlichtnegatie of links afslaande bestuurders die geen voorrang verlenen aan het tegemoetkomende verkeer, kunnen deze ongevallen verminderd worden door het kruispunt uit te rusten met een conflictvrije verkeerslichtenregeling of roodlichtcamera’s te plaatsen. Daarnaast kunnen goede zichtafstanden, coördinatieverbeteringen en een optimalisatie van de ontruimingstijd ook resulteren in minder frontale en zijdelingse ongevallen. Een duidelijk wegontwerp dat voor iedere weggebruiker gemakkelijk te begrijpen is (bv. een consistent en ondubbelzinnige fasering voor het linksaf slaand verkeer) leidt tot een harmonisering van het gedrag van weggebruikers en is daarom wenselijk.

Doordat bestuurders overstekende zwakke weggebruikers vaak niet opmerken, is het belangrijk dat de overstekvoorzieningen goed zichtbaar zijn voor naderende bestuurders. Daarnaast komen conflicten tussen zwakke weggebruikers en gemotoriseerde voertuigen nog steeds frequent voor bij verkeerslichtengeregelde kruispunten wanneer ze niet volledig beschermd worden door de verkeerslichtenregeling (bv. zwakke weggebruikers hebben dezelfde groen fase als het afslaande

1 Verkeerslichtengeregelde kruispunten met richtingen die een beschermd linksaf-beweging maar ook een niet-beschermde linksaf-beweging hebben. Dit zijn meestal kruispunten waarbij op de hoofdweg een conflictvrije linksaf-beweging geïnstalleerd is, terwijl het links afslaan op de zijwegen onbeschermd plaatsvindt.
verkeer). Daarom is vanuit verkeersveiligheidsoogpunt aan te bevelen dat conflicten met zwakke weggebruikers altijd worden beschermd door de verkeerslichtenregeling.
Crash Patterns at Signalized Intersections
(extended version of the report in English)

Summary

Background: Intersections are crash prone locations since they are characterized by many conflicting movements, resulting in complexity and large variations in interactions between road users. To minimize the number of conflicts at intersections and to increase traffic safety, intersections are often equipped with traffic signals. Despite the fact that traffic signals separate movements in space and time, severe crashes still occur at these intersections.

Objective: In this study, detailed crash information was collected (basic crash data + collision diagrams) about 1295 crashes at 87 signalized intersections. The objective is to draw up a crash profile of signalized intersection crashes and to identify key features of these crashes.

Method: The information of the collision diagrams is used to distinguish six different crash types and to create a crash location typology to divide the signalized intersection into 13 detailed and different typical segments. Logistic regression modeling techniques are used to identify relations between crash types, their crash location on certain signalized intersection segments, the crash severity and the different features that affect their crash occurrence.

Results: The results indicate that signalized intersections are characterized by four dominant crash types: rear-end, side, vulnerable road user and head-on crashes. Except for rear-end crashes, these crash types are also characterized by higher than expected crash severity levels. The crash location of these dominant crash types is related to specific signalized intersection segments: rear-end crashes occur mostly before the intersection or on the bypass, side and head-on crashes take mostly place on and near the intersection plane while vulnerable road user crashes occur predominately at the crossing facilities after the intersection plane or on the bypass. Besides the crash location, we also examined the effect of specific signalized intersection properties on the occurrence of the dominant crash types. Protected-only left-turn signal phasing has a positive effect on crashes involving vulnerable road users, head-on and rear-end crashes while protected/permitted left-turn phasing increases rear-end crashes. Signalized intersections equipped with red light cameras are characterized by less crashes with vulnerable road users and side and head-on collisions. In addition, red light cameras also result in an increase in rear-end crashes. The presence of a median leads to less head-on collisions while a lower design speed has a favorable impact on the number of injury crashes and crashes involving vulnerable road users.

Conclusion: The main goal of this study was to identify and analyze dominant crash types at signalized intersections by taking detailed information on the crash location into account. Some connections between certain signalized intersection crash types, their crash location and signalized intersection design characteristics have been found. The crash location typology method in which a signalized intersection is divided into typical and detailed intersection segments provides valuable insights in the nature of signalized intersection crashes and the safety impact of signalized intersection design.

Recommendations: Based on these results, a few recommendations for the design of signalized intersections can be formulated. To address the number of rear-end crashes, it is desirable that the signalized intersections and/or the traffic signals are designed to be sufficiently conspicuous. Improvements in signal coordination and optimization of change intervals may also lead to a decrease in rear-end crashes. It is widely acknowledged that side and frontal collisions are above all the result of red-light running or unprotected left-turn phasing. As a result, possible countermeasures include the implementation of protected left-turn phasing and red light cameras even though the latter measure gives rise to increases in rear-end crashes. Additional measures such as improvements in sight...
distances, signal coordination and change intervals may also result in less head-on and side crashes. A clear road design concept that is easily understandable for road users (e.g. consistent and unambiguous signal phasing for left-turning traffic) leads to a more homogenous road user behavior and is therefore beneficial. Additionally, motorists in general are more focused on other motorists than on vulnerable road users. Therefore, crossing facilities at signalized intersections should be designed to be clearly visible for approaching drivers. Conflicts between vulnerable road users and motorized vehicles still occur frequently at signalized intersections when they are not fully protected by the signal phasing (i.e. vulnerable road users have the same green phase as turning traffic). From a safety perspective, protected phasing for vulnerable road users is recommended.

1 Introduction

Intersections are crash prone locations since they are characterized by many conflicting movements, resulting in complexity and large variations in interactions between road users. To minimize the number of conflicts at intersections and to increase traffic safety, intersections are often equipped with traffic signals (McShane & Roess, 1990). Despite the fact that traffic signals separate movements in space and time, crashes at these intersections still occur. In Flanders, Belgium approximately 8% of all injury crashes occur at signalized intersections representing 4% of all road deaths (Nuyttens, Carpentier, Declerq, & Hermans, 2014). However, equipping intersections with traffic lights can also induce side effects. Traffic signals can change the crash pattern at intersections by decreasing head-on and angle crashes while increasing rear-end crashes (Elvik, Hoye, Vaa, & Sorensen, 2009; Ogden, 1996). Subsequently, traffic lights also give rise to red light running crashes which tend to be more severe since they typically occur at high speeds (Ogden, 1996).

Previous studies identified four dominant crash types at signalized intersections: rear-end, angle, sideswipe and vulnerable road user crashes (Abdel-Aty et al., 2006; Antonucci, Kennedy Hardy, Slack, Pfefer, & Neuman, 2004; Chandler et al., 2013; Ogden, 1996). Crashes with vulnerable road users and angle crashes are of a more severe nature and result more often in deadly or severely injured road users while sideswipe and rear-end crashes have a less serious outcome resulting in crashes with material damage or slight injuries (Abdel-Aty & Keller, 2005, 2005; Ye, Pendyala, Al-Rukaibi, & Konduri, 2008).

Several studies have also studied the relation between signalized intersection design and crash occurrence. The presence or absence of several signalized intersection design characteristics appears to have a beneficial or adverse effect on the traffic safety of these locations. The total number of lanes is positively related to the number of crashes (Abdel-Aty et al., 2006). However, exclusive right-turn and left-turn lanes have a positive effect on traffic safety since they reduce the total number of crashes while exclusive right-turn lanes (in countries with right-hand traffic) also lead to a decrease in rear-end crashes (Chandler et al., 2013; Wang, 2006). Medians lead to lower crash severity levels since they prevent more severe head-on crashes (Abdel-Aty & Keller, 2005). Signalized intersection speed limits play an important role in the total number of crashes, angle crashes, left-turn crashes, head-on crashes, rear-end collisions and crashes with vulnerable road users (VRU) (Abdel-Aty & Keller, 2005; Keller, Abdel-Aty, & Brady, 2006). In general, red light cameras tend to increase the number of rear-end crashes and decrease the occurrence of side crashes (i.e. left-turn + right-angle crashes) (Ellen De Pauw, Daniels, Brijs, Hermans, & Wets, 2014; Hoye, 2013; Shin & Washington, 2007). Protected-only and protected/permitted left-turn signal phasing lead to substantial decreases in the number of injury and severe injury crashes at signalized intersections (De Pauw, Daniels, Van Herck, & Wets, 2013). These types of signal phasing also have a favorable effect on left turn crashes (De Pauw et al., 2013; Srinivasan et al., 2012). VRU facilities also influence traffic safety at signalized intersections. At signalized intersections with low vehicle speeds and volumes, mixing cyclists with motorized traffic at the intersection has been reported to be the safest solution (Gårder, Leden, & Thedéen, 1994). Pedestrian safety at signalized intersections has been found to depend on the number of lanes. The more lanes pedestrians must cross, the higher the number of pedestrian crashes (Torbic et al., 2011).
2 Study objective

A lot of studies have already focused on the road safety performance of signalized intersections. However, little is known about the exact location of the crashes. Therefore, the present study focuses on identifying and analyzing the crash patterns at signalized intersections by using detailed information about the location of the crash. Gtalter and Fastenmeier (2010) analyzed driver errors by dividing intersections in segments according to the tasks that drivers should perform in each segment. We elaborated on this approach and tried to delineate the crash location on the signalized intersection itself in more detail to gain a better insight into the crash patterns and their exact location. This method identifies the dominant crash type inside each segment and enables to link the crash occurrence with design characteristics of the signalized intersection. As a result, the findings of this study result in a detailed description of the crash patterns at signalized intersections which provides insights into the safety impact and possible safety issues of this intersection design. Other studies have also applied the same or similar methods to other locations including stop sign controlled intersections (Retting, Weinstein, & Solomon, 2003), roundabouts (Polders, Daniels, Casters, & Brijs, 2015), freeway ramps (McCartt, Northrup, & Retting, 2004) and work zone crashes (Khattak & Targa, 2004).

3 Method

3.1 Data

3.1.1 Crash Data

In this study, the crashes were sampled from police-reported crashes at 87 signalized intersections in the region of Flanders, Belgium. The national crash database could not be used since it does not contain detailed information about the crash location at the signalized intersection. Therefore, several police zones were selected that systematically register more detailed crash location information. Ultimately, 12 police zones were able to provide the requested data. This approach resulted in a convenience sample of signalized intersection locations.

The crashes occurred in the period 2007-2011. Crash data were available for each year and for every sampled signalized intersection in this entire period. In total, 1344 crash reports containing injury and property-damage-only crashes were obtained. These police reports provided basic (such as time, place of occurrence, weather/light conditions) and detailed (such as crash type and location) information about the registered crashes. The detailed crash information, in the form of collision diagrams, was used to develop crash types. A collision diagram is a schematic representation of all crashes that occurred at a given signalized intersection or other location over a specific period (Ogden, 1996). This diagram indicates the dominant crash types at a signalized intersection and the maneuvers that led to these crashes while providing detailed information about the crash location at the intersection.

3.1.2 Intersection Design and Usage Data

Crash data only are not sufficient to provide insights in the crash patterns at signalized intersections. It is also important to know the crash location in terms of roadway and traffic data in order to gain a full understanding of the traffic safety situation. These factors may affect the crash occurrence. Roadway data aid in detecting the physical and use characteristics of the location which may have contributed to the crash occurrence or severity while traffic volume data are used to control for use intensity of the location (Kweon, 2011).

Based on a literature review (Abdel-Aty et al., 2006; Nambuusi, Brijs, & Hermans, 2008; Reurings et al., 2006), the most relevant signalized intersection characteristics were selected as they appear from
previous crash prediction model studies. They include the number of arms, the presence of exclusive
turn lanes, the number of lanes, built-up area, the type of bicycle infrastructure, the presence of a
median, the speed limit, the signal phasing, crossings for vulnerable road users, the presence of a
bypass and red light camera. No data were available for exposure by type of road user and the actual
driving speeds at the signalized intersection. A detailed description of intersection characteristics is
provided in table 1.

3.2 Signalized Intersection Segments

The detailed crash location was included by dividing the signalized intersections into different typical
segments, according to previously established knowledge on the crash occurrence and road user
behavior at signalized intersections (Abdel-Aty et al., 2006; Chandler et al., 2013; De Pauw et al., 2014;
Gstalter & Fastenmeier, 2010; Ogden, 1996). Figure 1 depicts the selected 13 segments. The segments
can be described as follows:

- Segment 1: 20-100 meters off the signalized intersection. Oncoming traffic, queues associated
 with congestion.
- Segment 2: 20 meters before the intersection plane until the stop line.
- Segment 3: exclusive left turn lane (if present).
- Segment 4: first half of the intersection plane. Pedestrian and cyclist crossings.
- Segment 5: second half of the intersection plane for traffic going straight ahead.
- Segment 6: second half of the intersection plane for traffic turning left.
- Segment 7: location until 20 meters after the junction plane for right turning leaving traffic.
 Pedestrian and cyclist crossings.
- Segment 8: identical to segment 7, but for traffic going straight ahead.
- Segment 9: identical to segment 7, but for left turning leaving traffic.
- Segment 10: location 20-100 meters after the intersection plane. Leaving traffic.
- Segment 11: the beginning of the bypass, if present.
- Segment 12: the middle section of the bypass, including pedestrian and cyclist crossings, if
 present.
- Segment 13: the end section of the bypass until the yield markings.

Segments 11-13 are optional and are only relevant when the signalized intersection is characterized by
a bypass.
Figure 1: Signalized intersection segments.
Figure 1 is a representation of a typical signalized intersection. The segments were defined in such a way that the variety of real-world designs is represented by the figure and meaningful analyses based on the defined standard segments are possible. To capture all possible designs, a sort of ‘maximal design’ was used, representing a typical signalized intersection lay-out with some extra features that are not necessarily always present. For example, a bypass lane was added in order to include also crashes that happen on bypass lanes at certain intersections. This means that only crashes at segments 11-13 must be registered in case of a signalized intersection with such a bypass lane. The same applies for the cycle facilities (cycle paths and cycle crossings): pedestrian or bicyclist crossings at real-world intersections occur in different varieties. This means that, whereas the figure is representing an adjacent cycle path, the real distance between the cycle facility and the roadway may vary between 0-10 meter and grade-separated. This principle applies also to the number of lanes and the number of intersection legs.

3.3 Crash Location Typology

A crash typology was created to assign the crashes to the segments in figure 1. This typology is based on the crash typology of Massie, Campbell & Blower (1993) who identified different crash scenarios between motorized vehicles based on crash data and collision diagrams.

The first step involved revising the crash data and collision diagrams to select the variables that seemed most useful to develop a crash location typology. The main focus of this review was on the pre-crash movements of the involved road users. The selected variables of the initial review were used to build a preliminary crash location typology, which was modified by adding and deleting variables until the final crash location typology scheme, as depicted in figure 2, was produced. This typology is applicable for crashes between motorized road users, between motorized and vulnerable road users and between vulnerable road users.

The southern intersection approach in figure 1 was used as analysis unit. Each crash was localized by starting from this intersection approach. The road user who makes the pre-crash maneuver/movement always approaches the intersection from this side. The maneuvering road user is based on the schematic representation of the crash in the collision diagrams.

The final crash location typology includes the number of road users involved in the crash, the location of the impact point, the relative pre-crash orientation of the road users and the movement of the road user who makes the maneuver. Figure 2 provides an overview of the typology. The crashes were first split according to whether the road user was involved in a crash with only one or multiple road users (step 1). These two groups were then divided based on whether the crash took place before, after, at the intersection plane or at the bypass (step 2). Multi-road user crashes were split into three categories: road users approaching each other from the same direction prior to the crash, road users approaching from opposite directions and road users approaching on crossing paths (step 3). Subsequently, the single- and multiple road user crashes were further split according to whether the maneuvering road user was moving straight ahead or attempted to make a left-, right- or U-turn (step 4). Finally, the resulting subgroups were assigned to the crash location expressed as segments 1-13 in figure 1 (step 5). Steps 4 and 5 are combined in figure 2 for visualization purposes.
Crash Location Typology

Single

- Before intersection
 - Straight
 - Right turn
 - Left turn
 - U-turn
- On intersection
 - Straight
 - Right turn
 - Left turn
 - U-turn
- After intersection
 - Same
 - Opposite

Multiple

- Before intersection
 - Straight
 - Right turn
 - Left turn
- On intersection
 - Straight
 - Right turn
 - Left turn
- After intersection
 - Same
 - Opposite

Numbers in **bold** and *italic* represent intersection segment.
NA: no segment available (not every manoeuvre can occur on each segment)
*Depends on distance to intersection
**For intersections without bypasses
***For intersections with bypasses

Figure 2: Crash location typology.
3.4 Crash Data Analysis

3.4.1 Logistic Regression Models

Several studies previously applied logistic regression analysis to test the influence of traffic crash risk factors (Al-Ghamdi, 2002; Chen, Cao, & Logan, 2012; Yan, Radwan, & Abdel-Aty, 2005; Yau, 2004; Zhang, Lindsay, Clarke, Robbins, & Mao, 2000). In this study the occurrence of certain dominant crash types at signalized intersections can be considered as a binary response variable. Therefore, logistic regression analysis was used to predict the probability of a certain event. This analysis also allows to test the relation between the dominant crash types and their crash location on the signalized intersection. The structure of the fitted logistic regression models was the following (Allison, 1999):

\[
\text{logit}(P) = \ln \left(\frac{P}{1-P} \right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_n x_n
\]

where \(P \) is the probability of dominant crash types, \(x_n \) is the independent variable and \(\beta_n \) are the partial logistic regression coefficients.

The odds of each dominant crash type were defined as the probability of this specific dominant crash type occurring divided by the probability of all other signalized intersection crash types occurring. Odds ratios (OR = \(\text{Exp}(\beta_n) \)) were calculated to determine the rate of decrease (0 ≤ OR < 1) or increase (OR > 1) of the probability of the outcome when the value of the independent variables increases with one unit (Field, 2009). Firth’s penalized maximum likelihood was applied to overcome the most common convergence failure in logistic regression, namely the problem of quasi-complete separation (Allison, 1999; Field, 2009; Heinze & Schemper, 2002). The logistic regression models were developed by the use of the LOGISTIC-procedure in SAS 9.3 and the variables identified in the literature as having a significant impact on signalized intersection crashes were added first. Crash reports with missing data were omitted from the models resulting in 1295 complete crash records. The model fit was assessed with the Hosmer and Lemeshow test which indicates if the final model provides a better fit than the null model. If the chi-square goodness-of-fit is not significant at CI 95%, the model has an adequate fit. Since this statistic, gives no indication of the error reduction of the final model, Nagelkerke’s R² was also used. The Variance Inflation Factor (VIF) was used to identify multicollinearity between the predictor variables. According to O’Brien (O’Brien, 2007), VIF’s higher than 4 indicate a high correlation between variables. Since all variables in the end models had VIF’s below this threshold there are no multicollinearity issues in the presented models.

4 Results

4.1 Descriptive Statistics

All crashes within 100m from the center of the intersection were included in the analysis to ensure that all crashes related to the signalized intersection are incorporated in the dataset. Descriptive statistics of the crash data are presented in Table 1. The registered crashes at the study locations were mostly injury crashes (54%, 699 out of 1295). The variable “Segment” indicates that most crashes occur in segments 1, 2 and 4 before the intersection plane and on segment 6 of the intersection plane where left turning traffic conflicts with oncoming vehicle streams. Segments 11-13 on the bypass seem to be less prone for crashes. This may be due to the small share of signalized intersections with a bypass (N = 29) in the police data.

The crashes were categorized into six different crash types: rear-end, head-on, sideswipe, single-vehicle, vulnerable road user (VRU) and side crashes. Four main crash types can be considered as the dominant crash types – rear-end, VRU crashes, side crashes (left-turn + right-angle crashes) and head-on crashes – since they accounted for 83% of the signalized intersection crashes.
Table 1: Descriptive Statistics.

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Variable Description</th>
<th>Signalized Intersection (N_locations = 87, N_crashes = 1295)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crash variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injury crash</td>
<td>The crash type with regard to the crash outcome</td>
<td>Property damage only = 596, Injury crash = 699</td>
</tr>
<tr>
<td>Crash severity</td>
<td>The crash severity is determined by the most severe casualty</td>
<td>No injuries = 596, Dead = 7, Severely injured = 64, Slightly injured = 628</td>
</tr>
<tr>
<td>Road user</td>
<td>Type of involved road user. Frequencies expressed at subject level</td>
<td>Car = 2098, Truck = 105, Bus = 27, Motorcycle = 48, Moped = 100, Cyclist = 162, Pedestrian = 42, Other = 70</td>
</tr>
<tr>
<td>Crash</td>
<td>Crash type according to number of involved road users</td>
<td>Single = 130, Multiple = 1165</td>
</tr>
<tr>
<td>Crash type</td>
<td>Crash type according to collision angle (0°, 90°, 180°)</td>
<td>Single vehicle = 122, Head-on (180°) = 144, Rear-end (0°) = 452, VRU = 268, Sideswipe (45°) = 98, Side crash (90°) = 211</td>
</tr>
<tr>
<td>Segment</td>
<td>The location of the crash expressed as one of the segments (seg.) of figure 1</td>
<td>Seg. 1 = 103, Seg. 2 = 301, Seg. 3 = 97, Seg. 4 = 214, Seg. 5 = 71, Seg. 6 = 187, Seg. 7 = 79, Seg. 8 = 62, Seg. 9 = 66, Seg. 10 = 36, Seg. 11 = 8, Seg. 12 = 33, Seg. 13 = 38</td>
</tr>
<tr>
<td>Intersection Design Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arms</td>
<td>Number of intersection arms</td>
<td>3 = 201 (22), 4 = 1094 (65)</td>
</tr>
<tr>
<td>Lanes</td>
<td>Total number of lanes at the intersection. In case of different situations at the intersection arms, the highest number of lanes is applied</td>
<td>1 = 90 (12), 2 = 434 (39), 3 = 379 (26), 4 = 392 (10)</td>
</tr>
<tr>
<td>Exclusive right</td>
<td>Presence of an exclusive right turn lane at the intersection (at least on one intersection arm)</td>
<td>Yes = 455 (63), No = 840 (24)</td>
</tr>
<tr>
<td>Exclusive left</td>
<td>Presence of an exclusive left turn lane at the intersection (at least on one intersection arm)</td>
<td>Yes = 1186 (72), No = 109 (15)</td>
</tr>
<tr>
<td>Built-up area</td>
<td>Location of the intersection in terms of inside or outside built-up area</td>
<td>Yes = 581 (50), No = 714 (37)</td>
</tr>
<tr>
<td>Median</td>
<td>Presence of a median at the intersection. In case of different situations at the intersection arms="Yes"</td>
<td>Yes = 930 (50), No = 365 (37)</td>
</tr>
<tr>
<td>Speed limit</td>
<td>Speed limit at the intersection</td>
<td>50 km/h = 442 (42), 70 km/h = 414 (31), 90 km/h = 439 (14)</td>
</tr>
<tr>
<td>Cycle facility</td>
<td>Type of cycle facility at the intersection. In case of different situations at the intersection arms, the highest cycle facility type is applied</td>
<td>Mixed = 30 (4), Cycle lanes = 507 (39), Separated = 554 (40), Grade-separated = 204 (4)</td>
</tr>
<tr>
<td>Pedestrian crossing</td>
<td>Presence of a pedestrian crossing at the intersection. In case of different situations at the intersection arms="Yes"</td>
<td>Yes = 1092 (81), No = 203 (6)</td>
</tr>
<tr>
<td>Cyclist crossing</td>
<td>Presence of a cyclist crossing at the intersection</td>
<td>Yes = 815 (52), No = 480 (35)</td>
</tr>
</tbody>
</table>
In case of different situations at the intersection arms= “Yes”

<table>
<thead>
<tr>
<th>Signal phasing</th>
<th>The type of signal phasing at the intersection (for left turns)</th>
<th>Protected-only = 301 (12), Protected/permitted = 236 (13), Permitted = 758 (62)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bypass</td>
<td>Presence of a bypass at the intersection</td>
<td>Yes = 712 (29), No = 582 (58)</td>
</tr>
</tbody>
</table>

Note: / values at intersection level

4.2 Logistic Regression Results

Table 2 presents the factors that influence dominant signalized intersection crash types. These models present the factors that affect the probability that one of these dominant crash types occur. The dependent variable was the probability that a specific dominant crash type occurred over the entire five-year period from 2007-2011.

The results show that the probability of an injury increases in case of side crashes, head-on crashes and crashes with vulnerable road users while single-vehicle crashes result significantly less in injury crashes. The injuries are also more severe in crashes involving vulnerable road users.

The crash types seem to be related to certain signalized intersection segments. Injury crashes are more likely on segments 4, 5 and 6, being the segments on the intersection plane than on segments 3, 10 and 13. Crashes before the intersection plane (segments 1-3) and on the bypass (segments 11-13) are more likely rear-end crashes than crashes on and after the intersection plane (respectively segments 5-6 and segments 7 and 10). Side crashes are more likely on the intersection plane (segments 4-8) than before (segments 1-3) and after the intersection plane (segment 10). Crashes on the intersection plane (segments 4-6) are also more likely head-on crashes than crashes before the intersection plane (segments 1-2). The probability for crashes with vulnerable road users is higher on the crossing facilities after the intersection plane (segments 7-8) and on the bypass (segment 12) than before (segments 1-3) and on the intersection plane (segments 5-6).

The type of left-turn signal phasing also influences the probability of certain dominant crash types. Injury crashes are less likely at intersections with protected-only and protected/permitted signal phasing (compared with the standard permitted signal phasing). Rear-end, head-on and vulnerable road user crashes are less likely at signalized intersections with protected-only signal phasing. Vulnerable road user crashes are also less likely at signalized intersections with protected/permitted signal phasing while the probability of rear-end crashes increases. The odds of head-on crashes seem to non-significantly decrease at signalized intersections with protected/permitted signal phasing.

Moreover, the signalized intersection layout affects the odds of certain dominant crash types. The probability of an injury crash decreases at signalized intersections with an exclusive lane for right turning traffic and rear-end crashes appear to be more likely at signalized intersections with 3 arms. Furthermore, rear-end and vulnerable road user crashes appear to be less likely at signalized intersections with two lanes while vulnerable road user crashes also are significantly more likely at signalized intersections with three lanes. Rear-end and head-on crashes are less likely at signalized intersections with medians.

Side crashes are more likely at signalized intersections located inside built-up areas while the probability of head-on crashes decreases.
Furthermore, injury crashes are less likely at 50 km/h intersections (compared with 70 and 90 km/h intersections) while vulnerable road user crashes are more likely at 50 km/h intersections and less likely at 70 km/h intersections (compared with 90 km/h intersections). Crashes with vulnerable road users also appear to be more likely at signalized intersections where cycle traffic is mixed with motorized traffic.

Enforcement cameras at signalized intersections also appear to affect certain crash types since the presence of a red light camera decreases the probability of side, head-on and vulnerable road user crashes.

The results of the logistic regression models were not able to reveal all characteristics of the dominant crash types. No meaningful models could be fit for sideswipe (N=121) and single-vehicle crashes (N=130). However, sideswipe crashes occur significantly more on the left turn lane in segment 3 ($\chi^2(1, N = 1295) = 62.734$, p<0.0001) and on segment 10 where the vehicles from the bypass merge with oncoming traffic ($\chi^2(1, N = 1295) = 18.729$, p<0.0001), while segment 1 before the intersection ($\chi^2(1, N = 1295) = 8.846$, p=0.0003), segment 8 after the intersection ($\chi^2(1, N = 1295) = 30.747$, p<0.0001), segment 9 after the intersection ($\chi^2(1, N = 1295) = 31.801$, p<0.0001) and segment 12 on the bypass ($\chi^2(1, N = 1295) = 7.088$, p=0.016) are characterized by significantly more single-vehicle crashes. The results of the descriptive statistics also revealed that rear-end and sideswipe crashes occur significantly more at red light camera signalized intersections while single-vehicle, VRU, head-on and side crashes dominate non-red light camera signalized intersections ($\chi^2(5, N = 1295) = 66.986$, p<0.0001). Significantly more crashes occur before the intersection (segments 2-3) and on/near the bypass (segments 10-13) for red light camera signalized intersections while non-red light camera signalized intersections are characterized by significantly more crashes at segment 1 before the intersection and segments 4-9 on and after the intersection ($\chi^2(12, N = 1295) = 57.940$, p<0.0001).
Table 2: Factors Influencing Probability of Signalized Intersection Crash Types.

<table>
<thead>
<tr>
<th>Variables¹</th>
<th>Injury crashes² according to crash type (Y=699)</th>
<th>Injury crashes² according to crash location (Y=699)</th>
<th>Rear-end crashes (Y=452)</th>
<th>Side crashes (Y=211)</th>
<th>Head-on crashes (Y=144)</th>
<th>VRU crashes (Y=268)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.6719 ***</td>
<td>0.8753 ***</td>
<td>-1.2603 ***</td>
<td>-1.5545 ***</td>
<td>-3.2815 ***</td>
<td>-0.3506 °</td>
</tr>
<tr>
<td>Crash type (ref = sideswipe)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single vehicle</td>
<td>-0.9745 (0.38) ***</td>
</tr>
<tr>
<td>Head-on</td>
<td>0.8965 (2.45) ***</td>
</tr>
<tr>
<td>Rear-end</td>
<td>-0.0396 (0.96) °</td>
</tr>
<tr>
<td>Side</td>
<td>0.6679 (1.95) ***</td>
</tr>
<tr>
<td>Vulnerable road user</td>
<td>0.6527 (1.92) °</td>
</tr>
<tr>
<td>Segment (ref = segment 9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segment 1</td>
<td>0.0020 (1.00) °</td>
<td>1.7636 (5.83) ***</td>
<td>-0.6957 (0.50) °</td>
<td>-1.3791 (0.25) °</td>
<td>-0.7382 (0.48) °</td>
<td>-0.7382 (0.48) °</td>
</tr>
<tr>
<td>Segment 2</td>
<td>-0.091 (0.91) °</td>
<td>2.7385 (15.46) ***</td>
<td>-3.743 (0.02) °</td>
<td>-2.4178 (0.09) °</td>
<td>-2.1688 (0.11) °</td>
<td>-2.1688 (0.11) °</td>
</tr>
<tr>
<td>Segment 3</td>
<td>-0.796 (0.45) ***</td>
<td>1.4328 (4.19) ***</td>
<td>-2.507 (0.08) °</td>
<td>-0.7805 (0.46) °</td>
<td>-1.3573 (0.26) °</td>
<td>-1.3573 (0.26) °</td>
</tr>
<tr>
<td>Segment 4</td>
<td>0.5328 (1.70) ***</td>
<td>-0.1245 (0.88) °</td>
<td>1.545 (4.68) ***</td>
<td>1.4759 (4.37) ***</td>
<td>0.1931 (1.21) °</td>
<td>0.1931 (1.21) °</td>
</tr>
<tr>
<td>Segment 5</td>
<td>0.9915 (2.70) ***</td>
<td>-2.1494 (0.12) °</td>
<td>2.799 (16.42) ***</td>
<td>1.0755 (2.93) ***</td>
<td>-1.0304 (0.36) ***</td>
<td>-1.0304 (0.36) ***</td>
</tr>
<tr>
<td>Segment 6</td>
<td>0.7509 (2.12) ***</td>
<td>-3.6358 (0.03) °</td>
<td>0.9336 (2.54) ***</td>
<td>3.3968 (29.87) ***</td>
<td>-1.1661 (0.31) ***</td>
<td>-1.1661 (0.31) ***</td>
</tr>
<tr>
<td>Segment 7</td>
<td>-0.092 (0.91) °</td>
<td>-1.6861 (0.19) °</td>
<td>1.9607 (7.10) ***</td>
<td>0.1590 (1.17) °</td>
<td>2.3335 (10.31) ***</td>
<td>2.3335 (10.31) ***</td>
</tr>
<tr>
<td>Segment 8</td>
<td>-0.0188 (0.98) °</td>
<td>-0.3096 (0.73) °</td>
<td>1.1573 (3.18) ***</td>
<td>0.1479 (1.16) °</td>
<td>1.3144 (3.72) ***</td>
<td>1.3144 (3.72) ***</td>
</tr>
<tr>
<td>Segment 10</td>
<td>-0.8600 (0.42) °</td>
<td>-1.6962 (0.18) °</td>
<td>-2.6337 (0.07) °</td>
<td>-1.3188 (0.27) °</td>
<td>0.00919 (1.01) °</td>
<td>0.00919 (1.01) °</td>
</tr>
<tr>
<td>Segment 11</td>
<td>0.9540 (2.60) °</td>
<td>1.5628 (4.77) °</td>
<td>0.7828 (2.19) °</td>
<td>-0.1309 (0.88) °</td>
<td>0.2505 (1.28) °</td>
<td>0.2505 (1.28) °</td>
</tr>
<tr>
<td>Segment 12</td>
<td>-0.5459 (0.58) °</td>
<td>1.1263 (3.08) °</td>
<td>0.2856 (1.33) °</td>
<td>-1.3473 (0.26) °</td>
<td>1.1215 (3.07) °</td>
<td>1.1215 (3.07) °</td>
</tr>
<tr>
<td>Segment 13</td>
<td>-0.6863 (0.50) °</td>
<td>2.7873 (16.24) ***</td>
<td>-0.9771 (0.38) °</td>
<td>0.8286 (2.29) °</td>
<td>-0.2283 (0.80) °</td>
<td>-0.2283 (0.80) °</td>
</tr>
<tr>
<td>VRU (ref = no)</td>
<td>Yes 1.0217 (2.78) ***</td>
<td>1.2739 (3.57) ***</td>
<td>-0.6937 (0.50) ***</td>
<td>-0.6937 (0.50) ***</td>
<td>-0.6937 (0.50) ***</td>
<td>-0.6937 (0.50) ***</td>
</tr>
<tr>
<td>Exclusive right (ref = no)</td>
<td>Yes -0.1518 (0.86) °</td>
<td>-0.1518 (0.86) °</td>
</tr>
<tr>
<td>Speed limit (ref = 90)</td>
<td>50 -0.6209 (0.54) ***</td>
<td>-0.6153 (0.54) ***</td>
<td>1.1511 (3.16) ***</td>
<td>1.1511 (3.16) ***</td>
<td>1.1511 (3.16) ***</td>
<td>1.1511 (3.16) ***</td>
</tr>
<tr>
<td>70 0.1664 (1.18) °</td>
<td>0.1513 (1.16) °</td>
<td>-0.5889 (0.55) ***</td>
<td>-0.5889 (0.55) ***</td>
<td>-0.5889 (0.55) ***</td>
<td>-0.5889 (0.55) ***</td>
<td></td>
</tr>
<tr>
<td>Cycle facility (ref = grade-separated)</td>
<td>Mixed traffic 1.4599 (4.31) ***</td>
<td>Adjacent -0.3425 (0.71) °</td>
<td>-0.3425 (0.71) °</td>
<td>-0.3425 (0.71) °</td>
<td>-0.3425 (0.71) °</td>
<td>-0.3425 (0.71) °</td>
</tr>
<tr>
<td>Separated -0.1700 (0.84) °</td>
<td>-0.1700 (0.84) °</td>
</tr>
</tbody>
</table>
Variables (Continued)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Injury crashes* according to crash type (Y=699)</th>
<th>Injury crashes* according to crash location (Y=699)</th>
<th>Rear-end crashes (Y=471)</th>
<th>Side crashes* (Y=351)</th>
<th>Head-on crashes (Y=181)</th>
<th>VRU crashes* (Y=268)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal phasing (ref = permitted)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protected-only and protected/permitted</td>
<td>-0.2325 (0.79)**</td>
<td>-0.2232 (0.80)**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protected-only</td>
<td></td>
<td></td>
<td>-0.2677 (0.77)*</td>
<td></td>
<td>-0.7673 (0.46)***</td>
<td>-0.5139 (0.60)**</td>
</tr>
<tr>
<td>Protected/permitted</td>
<td></td>
<td></td>
<td>0.514 (1.67)***</td>
<td></td>
<td>-0.0103 (1.00)*</td>
<td>-0.3845 (0.68)**</td>
</tr>
<tr>
<td>Arms (ref = 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>0.3497 (1.42)***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lanes (ref = 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>0.015 (1.02)*</td>
<td></td>
<td>0.1538 (1.17)*</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>-0.7966 (0.45)***</td>
<td></td>
<td>-0.3603 (0.70)**</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>0.0113 (1.01)*</td>
<td></td>
<td>0.6654 (1.95)***</td>
<td></td>
</tr>
<tr>
<td>Median (ref = no)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>-0.4030 (0.67)***</td>
<td></td>
<td>-0.1582 (0.85)**</td>
<td></td>
</tr>
<tr>
<td>Built-up area (ref = no)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>0.2423 (1.27)***</td>
<td></td>
<td>-0.3889 (0.68)***</td>
<td></td>
</tr>
<tr>
<td>RLC (ref = no)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>-0.1814 (0.83)***</td>
<td></td>
<td>-0.4832 (0.62)***</td>
<td>-0.4089 (0.66)***</td>
</tr>
<tr>
<td>Crash severity (ref = slightly injured)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unharmed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2.8083 (0.07)***</td>
<td></td>
</tr>
<tr>
<td>Dead</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.6745 (5.34)***</td>
<td></td>
</tr>
<tr>
<td>Severely injured</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0825 (2.95)***</td>
<td></td>
</tr>
<tr>
<td>Hosmer and Lemeshow test*</td>
<td>$\chi^2=8.9597$ (df= 8, p=0.3457)</td>
<td>$\chi^2=6.8137$ (df= 8, p=0.5569)</td>
<td>$\chi^2=3.5617$ (df= 8, p=0.8943)</td>
<td>$\chi^2=7.7375$ (df= 8, p=0.4595)</td>
<td>$\chi^2=10.4146$ (df= 8, p=0.2371)</td>
<td>$\chi^2=14.9971$ (df= 8, p=0.0592)</td>
</tr>
<tr>
<td>Nagelkerke R²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.3087</td>
<td>0.2747</td>
<td>0.6332</td>
<td>0.4602</td>
<td>0.5005</td>
<td>0.5950</td>
</tr>
</tbody>
</table>

NOTE: 1. Values present the parameter estimates of the logistic regression model. For categorical variables with more than 2 categories, the category is indicated; 2. The Hosmer and Lemeshow goodness-of-fit test indicates a good fit for all models; 3. The statistic indicates the error reduction of the model in percentages; 0.3087 is equal to an error reduction of 30.87%; Odds ratios between ()/Odds ratio values that are significant at p ≤ 0.05 are highlighted in bold.

* Due to convergence problems the variables 'crash type' and 'segment' could not be inserted in one model; ** Side crashes consist of the left-turn and right-angle crashes; VRU crashes: crashes in which at least 1 cyclist, motorcyclist, moped rider or pedestrian is involved.

** p≤0.01 (significant at 99% CI); *** p≤0.05 (significant at 95% CI); * p≤0.10 (significant at 90% CI); ° p>0.10 (not significant at 90% CI)
5 Discussion

The present study used an in depth crash location approach based on crash data and collision diagrams to analyze crash patterns at signalized intersections. The collision diagram information has proven to be essential and valuable for this purpose since these diagrams do not only allow to define dominant crash types but also show the pre-crash maneuvers and provides detailed information about the crash location on the signalized intersection. This crash location information was used to define 13 detailed signalized intersection segments which enabled to categorize the crash locations. This crash location approach in combination with the identification of dominant crash types and causal crash factors provides valuable insights in the nature of signalized intersection crashes and the safety impact of signalized intersection design.

Six crash types are identified of which four can be regarded as dominant signalized intersection crash types: rear-end, side, vulnerable road user and head-on crashes. These results are more or less in line with existing literature (Abdel-Aty et al., 2006; Antonucci et al., 2004; Chandler et al., 2013; Ogden, 1996). Except for rear-end crashes, these crash types are also characterized by higher than average crash severity levels. Single-vehicle crashes also appear to result in less injury crashes. Since more trucks are involved in this crash type \(X^2 (1, N = 2652) = 4.338, p = 0.037\), the lower crash severity levels can be accounted for by the higher mass of trucks which protects the truck driver from serious injuries.

In addition, the results show that the crash location is related to certain signalized intersection segments. Rear-end collisions mostly occur on the entry lanes (segment 1-3), possibly indicating differences in braking behavior between road users due to conflicting decisions in the dilemma zone. This relation between crash type and crash location on the intersection is supported by the results of another study (Yan et al., 2005) which indicated that rear-end crashes are the most common crash type at signalized intersections since the diversity of actions taken increases due to signal change. Inattentive driving of following drivers, differences between vehicles in braking performance and following too closely at the time of a signal change are identified as specific causes of rear-end crashes (Abdel-Aty & Abdelwahab, 2004; Sayer, Mefford, & Huang, 2000; Strandberg, 1998). As rear-end crash occurrence is related to a signal change, the presented crash pattern on the entry lanes is plausible since drivers need to be confronted with the traffic signals in order to make a conflicting decision which can result in a rear-end crash. The bypass is also prone to more rear-end crashes which can be caused by drivers yielding to vulnerable road users on the crossing facility (segment 12) or stopping to find a gap to merge with the oncoming traffic (segment 13). Since both situations result in braking movements, differences between drivers’ braking performance and inattentiveness also result in more rear-end crashes at these locations. Segments 4-6 are dominated by side and head-on crashes. Possibly, these crashes are the result of red light running drivers approaching the intersection from opposite directions, loss of control or left-turning vehicles that are not yielding to oncoming vehicles during the permissive phase. In their observational study, Gstalter & Fastenmeier (2010) found that drivers make most errors when turning left at a signalized intersection. Therefore, driver errors can be related to the crashes in segment 6. This emphasizes the importance of clear road design concepts that are easily understandable for road users, the so-called self-explaining roads. Since these crashes take place between crossing road users or road users approaching each other from opposite directions it is expected that they occur on the intersection plane. Side crashes between vehicles and crossing cyclists and mopeds also characterize segments 7 and 8. Crossing the signalized intersection after the intersection plane and on the bypass seems to be more dangerous for vulnerable road users since they prevail in crashes at segments 7, 8 and 12. In general, motorists are more focused on other motorists than on vulnerable road users. Most likely, this aspect played a role in these crashes. Furthermore, conflicts between vulnerable road users and motorized vehicles still occur frequently at signalized intersections when they are not fully protected by the signal phasing (i.e. vulnerable road users have the same green phase as turning traffic).

The type of signal phasing influences the proportion of certain crash types. Similar to De Pauw et al. (De Pauw et al., 2013) and Srinivassan et al. (2012) protected-only and protected/permissive left-turn signal phasing decrease the proportion of injury and vulnerable road user crashes. Srinivassan et al. (2012) found that protected-only decreases while protected/permitted left-turn signal phasing increases rear-end crashes, which is similar to the results presented here. Possibly, protected/permitted left-turn signal phasing still results in braking or stopping maneuvers from waiting left-turning vehicles to select
gaps in opposite traffic. Protected-only signal phasing also decreases the occurrence of head-on crashes since this signal phasing type prevents possible conflicts between road users.

In line with previous studies (De Pauw et al., 2014; Høye, 2013), red light cameras at signalized intersections are associated with lower proportions of side and vulnerable road user crashes. The presence of red light cameras also gives rise to fewer head-on crashes since these cameras prevent red light running. However, \(\chi^2 \)-tests also indicated that red light cameras result in adverse effects since they lead to increases in the number of rear-end crashes. Probably, red light cameras cause drivers to brake more abruptly in the dilemma zone since red light cameras lead to higher stopping propensities (Lum & Wong, 2003). As a result, conflicting decisions in the dilemma zone have a higher chance to lead to rear-end crashes.

The presence of a median results in a lower proportion of head-on crashes. Another study (Keller et al., 2006) also indicated that a median prevents vehicles from crossing into the path of oncoming traffic leading to less head-on crashes. Speed limits are significant for the proportion of injury crashes with an indication that higher speeds lead to a higher crash severity. Similar to Steinman and Hines (2004), the proportion of vulnerable road user crashes is also affected by the speed limit at the signalized intersection.

At signalized intersections where cycle traffic is mixed with motorized traffic, the proportion of vulnerable road user crashes is higher. However, these differences in crash susceptibility may also be related with different cyclist volumes at the cycle facilities. Due to the lack of traffic volume data for cyclists, we were unable to test this hypothesis. Elvik et al. (2009) support this hypothesis since they found that the reduction of bicycle crashes is smaller at signalized intersections with cycle lanes since cycle lanes attract more cyclists and may give rise to increased speeds among cyclists. In line with Torbic et al. (2011), the proportion of vulnerable road user crashes increases with the number of lanes.

One limitation of the present study concerns the sample. The used sample of signalized intersections (N=87) could be a somewhat biased representation of a larger (i.e. countrywide) signalized intersection population in the sense that only intersections were included where at least one crash was registered for each year and where detailed crash data were available for. A possible bias associated herewith is a slight overrepresentation of intersections with higher numbers of crashes. However, the objective of the study was not to make inferences about the performance of signalized intersections compared to each other, but to identify crash types, locations and factors that are associated with signalized intersection crashes. The collected sample of 1295 complete crash records can considered to be valid for that purpose.

The next issue deals with the accuracy of the crash allocation. The crash location typology used to allocate the crashes to the different segments is based on simplified rules. By following this typology, the allocation of the crashes to the different segments does not fully correspond to the actual location of the crash. Despite this inconsistency, the allocation is still quite accurate since the typology is based on the impact point, the pre-crash orientation of the road users and the maneuver that the road users make (i.e the most important characteristics to reconstruct a crash). The objective of the study was not to duplicate an exact replica of each crash location but to provide insights in the crash patterns of dominant signalized intersection crashes. The developed crash location typology is assumed to be valid for this purpose since the reported crash location in the collision diagrams may also slightly deviate from the actual crash location. To assure a consistency of 100% in both crash locations, advanced in-depth crash research such as crash reconstruction techniques are required. Since most police zones in Belgium are not familiar with these techniques, the results are not greatly affected by this variation.

Another point of discussion is the cross-section design of the study. According to Hauer (2010), causality cannot be reliably inferred from cross-section designs since cross-section studies compare intersections with a certain characteristic with other intersections with another characteristic. Therefore, this study design lacks the continuity that the intersection remains the same. Therefore, the possibility of confounding factors between the different intersections is not eliminated since this requires information about why a certain characteristic is present at one intersection and is absent at another (Hauer, 2010). Since this information is often not available and difficult to account for but is required to draw cause-effect conclusions from cross-section data (Hauer, 2010), the presence of a correlation between the proportion of crashes (the dependent variable) and certain intersection characteristics (the independent variables) is not sufficient to conclude that there is a causal relationship between both variables.
Finally, traffic flow count data were only available for 54 of 87 signalized intersections. Previous studies indicated that AADT (Chin & Quddus, 2003; Reurings et al., 2006; Lui & Young, 2004) is a critical variable for crash analysis. However, this only applies to studies which aim to explain the variation in road safety performance of a sample of locations by identifying the influence of design characteristics on the level of safety. The focus of this study is to explore the crash location of dominant crash types at a typical signalized intersection. To fulfil this objective, crash data of intersections with missing AADT can be used since AADT as such is not a crucial variable to define the crash location. Because, this study does not predict crashes but merely explores available crash data by delineating the crash location on the signalized intersection itself, the lack of AADT does not present any analysis issues.

An important advantage of the crash location approach is the generalizability. The presented approach is based on a sort of ‘maximal design’, representing a typical signalized intersection lay-out with some extra features that are not necessarily always present but are quite common. Since, the intersection layout and characteristics may vary the approach can easily be adjusted to different designs and locations by tailoring the segments to the specific intersection or location layout in question and by adding the inherent characteristics that play a role in the crashes to the typology. For example, if researchers want to study the safety difference between signalized intersections and signed intersections (i.e. controlled with stop or yield signs), they can simply add this feature to typology.

This approach is also a useful context for exploring intersection safety since it combines crash data with collision diagram information. As such, this method combines basic in-depth crash analysis with the benefits of aggregated crash analysis leading to more reliable quantitative analysis. As a result, a more detailed insight is gained in the development and occurrence of crash types by relating crash occurrence with design characteristics of the signalized intersection. This insight is needed to assess the safety impact and possible safety issues of this intersection design which is necessary to select the appropriate countermeasure to decrease crashes.

6 Conclusions

The main goal of this study was to identify and analyze dominant crash types at signalized intersections by taking detailed information on the crash location into account. Some connections between certain signalized intersection crash types, their crash location and signalized intersection design characteristics have been found:

- Four dominant crash types occur at signalized intersections: rear-end, side, vulnerable road user and head-on crashes. Except for rear-end crashes, these crash types are also characterized by higher than expected crash severity levels.
- The crash location of these dominant crash types is related to specific signalized intersection segments: rear-end crashes occur mostly before the intersection or on the bypass, side and head-on crashes mostly take place on and near the intersection plane while vulnerable road user crashes occur predominantly at the crossing facilities after the intersection plane or on the bypass.
- Protected-only and protected/permissive left-turn signal phasing, exclusive turn lanes and 50 km/h speed limits are associated with lower proportions of injury crashes.
- Characteristics associated with higher proportions of rear-end crash types are protected/permitted left-turn signal phasing and red light cameras.
- Lower proportions of head-on crashes are associated with red light cameras, protected-only left-turn signal phasing and medians.
- Red light cameras are associated with lower proportions of side crashes.
- Lower proportions of vulnerable road user crashes are associated with red light cameras and protected-only and protected/permissive left-turn signal phasing.
- Intersection features combined with detailed signalized intersection segments as a proxy for the crash location features provide valuable insights in the nature of signalized intersection crashes and the safety impact of signalized intersection design.
7 Recommendations

This study revealed that the crash location of specific crash types is related to certain signalized intersection segments. Rear-end crashes predominantly occur before the intersection or on the bypass. Side and head-on crashes mostly occur on and in the vicinity of the intersection plane while vulnerable road user crashes mostly take place at the crossing facilities after the intersection plane (according to the perception of the motorized road users) or on the bypass. Based on these results, a few recommendations for the design of signalized intersections can be formulated.

To address the number of rear-end crashes, it is desirable that the signalized intersections and/or the traffic signals are designed to be sufficiently conspicuous. Improvements in signal coordination and optimization of change intervals may also lead to a decrease in rear-end crashes.

It is widely acknowledged that side and frontal collisions are above all the result of red-light running or unprotected left-turn phasing. As a result, possible countermeasures include the implementation of protected left-turn phasing and red light cameras even though the latter measure gives rise to increases in rear-end crashes. Additional measures such as improvements in sight distances, signal coordination and change intervals may also result in less head-on and side crashes. A clear road design concept that is easily understandable for road users (e.g. consistent and unambiguous signal phasing for left-turning traffic) leads to a more homogeneous road user behavior and is therefore beneficial.

Additionally, motorists in general are more focused on other motorists than on vulnerable road users. Therefore, crossing facilities at signalized intersections should be designed to be clearly visible for approaching drivers. Conflicts between vulnerable road users and motorized vehicles still occur frequently at signalized intersections when they are not fully protected by the signal phasing (i.e. vulnerable road users have the same green phase as turning traffic). From a safety perspective, protected phasing for vulnerable road users is recommended.

8 Acknowledgements

This research was carried out within the framework of the Policy Research Centre Traffic Safety and was partly supported by a grant from the Research Foundation Flanders. The content of this paper is the sole responsibility of the authors.
References

Het Steunpunt Verkeersveiligheid 2012-2015 is een samenwerkingsverband tussen de volgende partners: