Searching for the severity dimension of traffic events

ALIAKSEI LAURESHYN, TIM DE CEUNYNCK, CHRISTOFFER KARLSSON, ÅSE SVENSSON

Safety pyramid

- Accidents
- Serious conflicts
- Slight conflicts
- Potential conflicts
- Undisturbed passages

C. Hydén, 1987
Safety pyramid

Svensson, 1998

What is ”severity” then?

- Nearness to a collision…
- Nearness to a collision + consequences (somehow)…

Vision Zero: “traffic system with no fatalities or serious injuries”

Suggested definition:
Severity = Nearness to a person serious injury/fatality
What is "severity" then?

Still, the questions remain:
• How near was an encounter to a collision?
• What the consequences would have been if the collision had taken place?
• ... And how to weigh these two together?
How to measure **nearness-to-collision**?

- **Time-to-Collision** (*TTC*)
- **Time Advantage** (*TAdv*) – the expected time between the first road user leaving the conflict zone and the second one arriving at it.
- *T₂*

\[
T_{Ad} = T_1 - T_2
\]

Laureshyn, 2010
Example

2 events

$T_2^{\text{min}} = 0.7$ sec in both

Do they feel equally “severe”?
How to measure consequences?

Delta V

\[\Delta V_{1} = V_{1, \text{after}} - V_{1, \text{before}} \]

\[\Delta V_{2} = V_{2, \text{after}} - V_{2, \text{before}} \]

\[\Delta V_{\text{after}} = \frac{m_{1} \cdot \Delta V_{1} + m_{2} \cdot \Delta V_{2}}{m_{1} + m_{2}} \]
How to measure consequences?

What is "severity" then?
5 working days (2.5 so far)
6:00-21:00
Which one is more severe?
How to ”weigh” together?

- $T_{2,\text{min}}$ reflects the time margin between the road users
- This time still can be used for **braking**
- deltaV with speeds **after braking** during $T_{2,\text{min}}$?
- But at what deceleration rate?

4 m/s^2 – normal braking

8 m/s^2 – emergency braking

How to ”weigh” together?

<table>
<thead>
<tr>
<th>dV8</th>
<th>67</th>
</tr>
</thead>
<tbody>
<tr>
<td>dV6</td>
<td>91</td>
</tr>
<tr>
<td>dV4</td>
<td>147</td>
</tr>
<tr>
<td>dV0</td>
<td>601</td>
</tr>
<tr>
<td>exposure</td>
<td>10259</td>
</tr>
</tbody>
</table>

Frequency

<table>
<thead>
<tr>
<th>0</th>
<th>2000</th>
<th>4000</th>
<th>6000</th>
<th>8000</th>
<th>10000</th>
<th>12000</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>91</td>
<td>147</td>
<td>601</td>
<td>10259</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How to "weigh" together?

\[\delta V_0 \ (N=906) \]

How to "weigh" together?

\[\delta V_4 \ (N=305) \]
How to "weigh" together?

\[\text{deltaV}_8 (N=67) \]

How to ”weigh” together?

Classification by \(\text{deltaV}_4 \)
How to ”weigh” together?

Classification by deltaV₈

<table>
<thead>
<tr>
<th>ID</th>
<th>deltaV₈, m/s</th>
<th>dV8</th>
<th>dV6</th>
<th>dV4</th>
<th>dV0</th>
<th>TTC₉₉</th>
<th>T²₉₉</th>
</tr>
</thead>
<tbody>
<tr>
<td>2322</td>
<td>9.0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>326</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>481</td>
<td>5.8</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>115</td>
<td>no value</td>
<td>11</td>
</tr>
<tr>
<td>2170</td>
<td>4.7</td>
<td>3</td>
<td>8</td>
<td>17</td>
<td>716</td>
<td>no value</td>
<td>2</td>
</tr>
<tr>
<td>2025</td>
<td>4.4</td>
<td>4</td>
<td>7</td>
<td>14</td>
<td>455</td>
<td>no value</td>
<td>7</td>
</tr>
<tr>
<td>1974</td>
<td>4.3</td>
<td>5</td>
<td>10</td>
<td>12</td>
<td>452</td>
<td>no value</td>
<td>8</td>
</tr>
<tr>
<td>2260</td>
<td>4.3</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>28</td>
<td>no value</td>
<td>25</td>
</tr>
<tr>
<td>32</td>
<td>4.2</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>287</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>1934</td>
<td>4.2</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>75</td>
<td>no value</td>
<td>68</td>
</tr>
<tr>
<td>821</td>
<td>3.7</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>296</td>
<td>29</td>
<td>50</td>
</tr>
<tr>
<td>2224</td>
<td>3.7</td>
<td>10</td>
<td>11</td>
<td>15</td>
<td>509</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2497</td>
<td>3.6</td>
<td>11</td>
<td>4</td>
<td>4</td>
<td>48</td>
<td>no value</td>
<td>48</td>
</tr>
<tr>
<td>2360</td>
<td>3.0</td>
<td>12</td>
<td>15</td>
<td>10</td>
<td>177</td>
<td>no value</td>
<td>41</td>
</tr>
<tr>
<td>574</td>
<td>2.9</td>
<td>13</td>
<td>18</td>
<td>45</td>
<td>747</td>
<td>63</td>
<td>4</td>
</tr>
</tbody>
</table>
Discussion

- New indicator to measure "severity" – nearness to collision & consequences. VRU!!!

- Parameters (a, elasticity, RU type, angle) still needs to be validated

- Hard to define threshold if Extreme Value Theory methods are applied for estimating accident number

- TTC with accurate measurements is often of no use