Metabolic phenotyping by 1H-NMR spectroscopy: A tool to detect lung cancer

Evelyne Louis
GSK Clinical Science Award
Presentation 3
Content

- Introduction
- Research questions and methodology
- Results
- Conclusion and future perspectives
Hallmarks of cancer

2000

- Self-sufficiency in growth signals
- Evading apoptosis
- Insensitivity to anti-growth signals
- Sustained angiogenesis
- Tissue invasion & metastasis
- Limitless replicative potential

Hanahan, 2000

2011

Emerging Hallmarks

- Deregulating cellular energetics
- Avoiding immune destruction
- Genome instability and mutation
- Tumor-promoting inflammation

Enabling Characteristics

Hanahan, 2011
Dysregulated cancer cell metabolism

Weinberg, 2009
Metabolomics

- 1H-NMR spectroscopy
 - Overview of protonated compounds in body fluids

NMR tube containing blood plasma

1H-NMR spectrometer

1H-NMR spectrum
Research questions

Does the analysis of the metabolite composition of blood plasma by 1H-NMR spectroscopy allows to detect lung cancer?

Can a statistical classifier be constructed by means of multivariate statistics?

Is it possible to validate this statistical classifier with an acceptable predictive accuracy?
Research methodology

Controls

Lung cancer patients

Analysis by 1H-NMR spectroscopy

Valine (1mg/100µl plasma)

110 integration regions

Reference sample (600 µl D$_2$O + 200 µl plasma)

30/01/2015
evelyne.louis@uhasselt.be
Research methodology

Controls

Lung cancer patients

Metabolic interpretation

Analysis by \(^1\)H-NMR spectroscopy

\(^1\)H-NMR spectrum

Multivariate statistics

110 integration regions

30/01/2015
evelyne.louis@uhasselt.be
Subject characteristics

<table>
<thead>
<tr>
<th></th>
<th>Training cohort</th>
<th>Validation cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung cancer patients (LC)</td>
<td>Controls (C)</td>
<td>Lung cancer patients (LC)</td>
</tr>
<tr>
<td>Number</td>
<td>190</td>
<td>182</td>
</tr>
<tr>
<td>Gender</td>
<td>M: 71%</td>
<td>M: 53%</td>
</tr>
<tr>
<td></td>
<td>F: 29%</td>
<td>F: 47%</td>
</tr>
<tr>
<td>Average age</td>
<td>68 ± 10</td>
<td>69 ± 11</td>
</tr>
<tr>
<td>Average BMI</td>
<td>25.8 ± 4.7</td>
<td>28.1 ± 4.8</td>
</tr>
</tbody>
</table>

- **Construct statistical classifier**
- **Examine predictive accuracy of statistical classifier**
Training cohort – 110 variables

OPLS-DA plot
 Discrimination

S-plot
 Biomarkers

162 out of 182 (89%) correctly classified
145 out of 190 (76%) correctly classified
Validation cohort – 110 variables

Specificity: 72% (42/58)
Sensitivity: 72% (36/50)

ROC-curve
AUC training cohort: 0.86
AUC validation cohort: 0.79
Training cohort – 19 variables

151 out of 182 (83%) correctly classified
132 out of 190 (69%) correctly classified

\[\downarrow \text{in } \text{LC} \]
- Alanine
- Lactate
- Lipids

\[\uparrow \text{in } \text{LC} \]
- Glucose
- Threonine
- Myo-inositol

: C
: LC
Validation cohort – 19 variables

Specificity: 64% (37/58)
Sensitivity: 82% (41/50)

ROC-curve

AUC training cohort: 0.81
AUC validation cohort: 0.79
Conclusion and future perspectives

- A statistical classifier constructed with only the most discriminating variables has already an acceptable predictive accuracy.

- Future experiments will investigate whether the constructed classifier can be used as a valid screening tool.
Acknowledgements

- Prof. Dr. M. Thomeer
- Prof. Dr. L. Mesotten
- Prof. P. Adriaensens
- Dr. K. Vanhove
- Ma. G. Reekmans
- Mevr. L. Bervoets
- University Biobank Limburg
- Limburg Clinical Research Program, sponsored by Limburg Sterk Merk