Simulating the Behavior of Opportunistic Network Protocols at Mass Events with ns-3

Bram Bonné Arno Barzan Peter Quax Wim Lamotte

Goal
Comparing and analyzing different opportunistic routing protocols through simulation using real-world mobility traces

Protocols

Opportunistic routing protocols route messages by passing them on via intermediate devices within range

- **Buffer management**
 - Maximum buffer size
 - Message retaining priority
- **Sending frequency**
 - Depending on current neighbors
 - Depending on history
- **Number of copies**
 - Limit the number of message copies in the network
 - Enforce a maximum per message among nodes
- **Predictions**
 - Predict probability of contact between neighbor and recipient
 - Forward to neighbor according to this probability

Protocol metrics

Evaluate protocols using objective metrics

- Hops
- Overhead
- Delivery rate
- Latency

Simulations

Simulations are performed in two different network simulation environments

- **ONE**
 - Offload network infrastructure
 - Communicate at mass events
 - Direct message exchange
 - Delivery guarantees
 - Ease of deployment
 - Dynamic scalability
- **ns-3**
 - Opportunistic protocols already implemented
 - Better real-world modeling
 - Fast prototyping
 - Advanced tracing capabilities

Acquiring mobility data

Bluetooth tracking of visitors at a mass event: the Pukkelpop 2012 music festival

Possible improvements in ns-3

- More robust handling of mobility traces
- Enhance IPv6 multicast for easier neighbor communication
- Readily available opportunistic network protocol implementations

universiteit hasselt *EDM*