Differentiation of the plasma metabolite profile detected with \(^1\text{H}-\text{NMR spectroscopy of obese and normal-weight children and adolescents**

Bervoets Liene\(^*\), Massa Guy, Reekmans Gunter and Adriaensens Peter

\(^1\)Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
\(^2\)Department of Paediatrics, Jessa Hospital, Hasselt, Belgium
\(^3\)Institute for Materials Research (IMO), Hasselt University, Diepenbeek, Belgium

\(^*\)Contact information: liene.bervoets@uhasselt.be

Introduction

Childhood obesity is a major health problem worldwide.\(^1\) Obese children are at high risk to develop co-morbidities such as cardiovascular dysfunction, type 2 diabetes, pulmonary, hepatic and renal complications.\(^2\) To improve current treatment strategies for childhood obesity, a proper understanding of obesity-related pathophysiological mechanisms is required. Metabolomics is increasingly used as a tool for the study of obesity, since the plasma metabolite profile is reflective of metabolic processes.\(^3\)

Aim

To investigate and compare the metabolite profile of obese and normal-weight children detected with \(^1\text{H}-\text{NMR spectroscopy.**

Methods

- Fasting plasma
- Centrifugation
- \(^1\text{H}-\text{NMR spectroscopy}
- 110 variables

Results

After correction for multiple testing, 19 spectral regions were significantly different in obese compared with normal-weight children (p value < 4.545 x 10^{-4}).

Conclusion

Our findings show a clear differentiation between the plasma metabolite profile of obese and normal-weight children. However, additional research is needed in a larger sample population in order to translate current findings into a clinically meaningful outcome.

References

Acknowledgements

This study is part of the Limburg Clinical Research Program (LCRP) UHasselt-ZOL-Jessa, supported by the foundation Limburg Sterk Merk, Hasselt University, Ziekenhuis Oost-Limburg and Jessa Hospital. Samples are stored at the University Biobank Limburg (UBilim).

This poster was presented at the 1st First Belgian-Netherlands Joint symposium on Metabolomics on May 13 and 14th, 2013 in Spa, Belgium