Implementation, validation and application of an activity-based transportation model for Flanders

Proefschrift voorgelegd tot het behalen van de graad van Doctor in de Verkeerskunde, te verdedigen door:

Bruno KOCHAN

Promotor: prof. dr. Geert Wets
Copromotoren: prof. dr. ir. Tom Bellemans
 prof. dr. Davy Janssens
Acknowledgements

I would first like to thank Hasselt University and all my colleagues of the Transportation Research Institute (IMOB). I greatly benefited from discussing the issues of this dissertation with the persons I was involved with on a daily basis.

I’m particularly indebted to my promotor, Prof. dr. Geert Wets, for giving me the opportunity to start a doctoral study. His belief in my abilities made my feeling of responsibility towards IMOB and myself only larger. I’m also particularly indebted to my direct supervisor, Prof. dr. ir. Tom Bellemans, for his unending stream of feedback, conversations and encouragement. Without him, this dissertation would have been much shorter. Prof. dr. Davy Janssens also deserves my gratitude. His positive criticism, kind advice and patience have truly helped me a lot in times I needed it the most.

I also really like to express my genuine thanks to my parents and my grandfather for their motivation and encouragement. Without them, my career path would have been different. Therefore I would like to dedicate this doctoral thesis to my parents and my paternal grandfather.

As one of the last persons, I would like to thank one person in particular, a philosopher and an authentic academic, namely dr. Antoon Vloemans. His books inspired me a lot, in my private life but also for a substantial part in my professional life, and therefore he deserves a place in this dissertation.

Last but not least, I like to thank my inner voice. He was the true motivator in all circumstances. There were times during my doctoral study where my activities felt like those of the Ancient Greek mythological figure Sysyphos who, as the myth goes, rolled an immense boulder up a hill, only to watch it roll back down. However, as time went by, with a lot of hard work and dedication, I most of the time managed to successfully end the tasks I was working on. All those difficult tasks I had to deal with only made me mentally stronger, and this is actually what a doctoral study is all about...

Bruno Kochan, 16 March 2012, Belgium
## Contents

Chapter 1 Introduction .......................................................................................1
  1.1 Research motivation ................................................................... 1
  1.2 Contributions of the dissertation .............................................. 2
  1.3 Organization of this manuscript .................................................. 3

References .............................................................................................................4

Chapter 2 Quality assessment of location data obtained by the GPS-enabled PARROTS survey tool ........................................5
  2.1 Introduction .................................................................................... 6
  2.1.1 PARROTS: An activity-travel diary survey tool on a GPS-enabled PDA .................................................................................. 8
  2.2 Data collection .............................................................................. 9
  2.3 Household selection ...................................................................... 10
  2.4 Analyses and results ........................................................................ 11
  2.4.1 Impact of GPS-enabled PDA technology on user response rates . 11
  2.4.2 GPS-based location and travel data quality ............................... 14
  2.4.3 PARROTS usage patterns ....................................................... 17
  2.5 Conclusions and discussion .......................................................... 18

References ...........................................................................................................20

Chapter 3 Implementation framework and development trajectory of the FEATHERS activity-based simulation platform ..................................................23
  3.1 Introduction and problem statement ............................................. 24
  3.2 Data collection challenges ............................................................ 26
  3.2.1 Introduction: Data for modeling dynamic activity-travel behavior .................................................................................. 26
  3.2.2 PDA-enhanced data collection ................................................. 27
  3.2.3 Paper-and-Pencil data collection .............................................. 30
  3.2.3 Social network data ............................................................... 31
  3.2.3 Stated adaptation experiments ............................................... 31
  3.2.3 Event-based data collection .................................................... 32
  3.3 Static and dynamic activity-based modeling ................................. 33
  3.3.1 Static activity-based modeling ................................................ 33
  3.3.2 Semi-static activity-based modeling ........................................ 34
  3.3.3 Dynamic activity-based modeling .......................................... 35
  3.3.4 Full microscopic activity-based model with microscopic route choice .......................................................... 36
  3.4 FEATHERS’ modular system design ............................................. 37
  3.5 Travel demand management strategies within FEATHERS .............. 46
  3.6 Conclusions .............................................................................. 48

References ..........................................................................................................49

Chapter 4 Validation of an activity-based traffic demand model for Flanders ..................................................................................55
  4.1 Introduction ..................................................................................... 55
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>FEATHERS .......................................................... 56</td>
</tr>
<tr>
<td>4.3</td>
<td>The ALBATROSS system .................................................. 57</td>
</tr>
<tr>
<td>4.4</td>
<td>Incorporating the ALBATROSS model inside FEATHERS .......... 58</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Tailoring the ALBATROSS model to the Flemish situation ...... 58</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Preparing input data for the ALBATROSS model .................. 59</td>
</tr>
<tr>
<td>4.5</td>
<td>Travel demand and traffic assignment model chain ............... 62</td>
</tr>
<tr>
<td>4.5.1</td>
<td>FEATHERS-based transportation demand ............................. 62</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Traffic assignment ....................................................... 62</td>
</tr>
<tr>
<td>4.6</td>
<td>Validation of Flemish simulation results .......................... 64</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Validation on the level of model components ..................... 64</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Validation of the FEATHERS activity-travel time dimension ...... 66</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Validation of the FEATHERS activity-travel space dimension ..... 67</td>
</tr>
<tr>
<td>4.6.4</td>
<td>FEATHERS validation in terms of traffic counts and vehicle kilometers travelled ............................................. 69</td>
</tr>
<tr>
<td>4.7</td>
<td>Conclusion and discussion ................................................. 72</td>
</tr>
</tbody>
</table>

References................................................................................. 73

Chapter 5 An estimation of total vehicle travel reduction in the case of telecommuting. Detailed analyses using an activity-based modeling approach............................................................ 75

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction .................................................................. 76</td>
</tr>
<tr>
<td>5.2</td>
<td>The FEATHERS activity-based simulation platform .................. 77</td>
</tr>
<tr>
<td>5.3</td>
<td>Travel demand management strategies that can be addressed within FEATHERS ............................................. 78</td>
</tr>
<tr>
<td>5.4</td>
<td>Estimating the impacts of telecommuting on travel: Method of Mokhtarian .......................................................... 79</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Introduction .................................................................. 80</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Calculation steps .......................................................... 80</td>
</tr>
<tr>
<td>5.5</td>
<td>Estimating the impacts of telecommuting on travel: FEATHERS .......................................................... 82</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Introduction .................................................................. 82</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Implementation of the telecommuting scenario .................... 82</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Derivation of OD matrices ................................................ 83</td>
</tr>
<tr>
<td>5.5.4</td>
<td>Traffic assignment .......................................................... 83</td>
</tr>
<tr>
<td>5.5.5</td>
<td>Calculation steps .......................................................... 84</td>
</tr>
<tr>
<td>5.5.6</td>
<td>Additional micro simulation analyses in FEATHERS ............... 85</td>
</tr>
<tr>
<td>5.6</td>
<td>Conclusions .................................................................... 89</td>
</tr>
</tbody>
</table>

References................................................................................. 91

Chapter 6 Using activity-based modeling to predict spatial and temporal electrical vehicle power demand in Flanders................................................. 93

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction .................................................................. 94</td>
</tr>
<tr>
<td>6.2</td>
<td>Activity-based models to predict energy demand by electric vehicles .................................................................. 94</td>
</tr>
<tr>
<td>6.3</td>
<td>Smart grids and transport engineering ................................................. 95</td>
</tr>
<tr>
<td>6.4</td>
<td>Electric energy demand evolution – Power demand ..................... 97</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Energy demand .................................................................. 97</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Power demand .................................................................... 97</td>
</tr>
<tr>
<td>6.6</td>
<td>The use of activity-based models ............................................. 98</td>
</tr>
</tbody>
</table>
6.7 Electric vehicle fleet attributes .......................................................... 98
6.7.1 Vehicle categories ........................................................................ 98
6.7.2 Available chargers ....................................................................... 99
6.7.3 Company cars in Belgium ............................................................ 99
6.7.4 Relation between EV ownership and EV type ............................. 100
6.8 Simulations ...................................................................................... 100
6.8.1 Method overview .......................................................................... 100
6.8.2 Vehicle characteristics determination ......................................... 102
6.8.3 BEV-feasibility ........................................................................... 103
6.8.4 Vehicle sampling ........................................................................ 104
6.8.5 Charging parameters .................................................................... 105
6.8.5.1 Assumptions valid for all scenarios concerned ......................... 105
6.8.5.2 Scenario specific assumptions .................................................. 105
6.8.5.3 Aggregation of micro simulation results .................................... 106
6.9 Summary of results for the Flemish region ................................... 106
6.10 Conclusions .................................................................................... 109
6.11 Future research .............................................................................. 109

References ......................................................................................................... 110

Chapter 7 Final discussion and conclusion ..................................................... 113
7.1 Conclusions ....................................................................................... 113
7.1.1 The PARROTS survey tool ............................................................. 113
7.1.2 The FEATHERS framework ............................................................ 113
7.1.3 Validation of an activity-based model for Flanders ...................... 114
7.1.4 Traffic demand scenario's .............................................................. 116
7.2 Future research .................................................................................. 117
7.2.1 Redressing equilibrium between traffic demand and traffic supply .......................................................... 117
7.2.2 Activity travel planning and rescheduling behavior .................... 118
7.2.3 A synthetic population creator ...................................................... 119
7.2.4 A more detailed transport mode choice model ............................. 120
7.2.5 Retailoring the ALBATROSS-based transport model .................. 121
7.2.6 Extending FEATHERS with an urban simulation model .............. 122

Summary ........................................................................................................ 125

Samenvatting .................................................................................................. 129
Chapter 1  Introduction

1.1  Research motivation

The rapid economic development in most Western countries has led to a quasi linear growth in the yearly number of vehicle miles travelled since the 1970’s (Mobiliteitsplan Vlaanderen, 2003; European Commission, 2001). Personal mobility, which increased from 17 km a day in 1970 to 35 km in 1998, is now more or less seen as an acquired right. For passenger transport, the determining factor is the spectacular growth in car use. The number of cars has tripled in the last 30 years. Although the level of car ownership is likely to stabilize in most countries of the European Union, this will not be the case in the candidate countries, where car ownership is seen as a symbol of freedom. This claim is also supported by research, based on predictions about world trade, national income and urbanization, which demonstrate that the demand for mobility in Europe is expected to rise considerably in the years to come (United Nations, 2001; European Commission, 2001). At the same time, however, traffic is also an important cause of accidents, environmental pollution and damage to health. As such, one of the key challenges of the modern policy making consists of promoting a sustainable transportation system aiming at the prevention or reduction of the negative effects of the transportation system on health, livability and environment. Therefore, these goals have also been set in several recent policy documents (Van Brempt, 2004; Vlaamse Regering, 2006; VMM, 2005; Ministerie van de Vlaamse Gemeenschap, 2003).

All traffic related effects described above such as traffic safety, environmental and health effects can be assessed by means of specific models. However, all models depend on traffic data as input. These traffic data can be obtained by different kind of transport models such as traditional so called 4-step models, trip-based and tour-based models. However, the last decade showed the emergence of what is known as activity-based transport models. These types of models not only predict trips, but also activities in between those trips yielding an enriched travel data set that allows for the assessment of more detailed traffic safety, environmental problems and health effects since activity data can be used as well next to trip data. For example, health effects can be determined more accurately since person hours exposure, as a result of activities, can now be calculated by means of activity-based models. Since the beginning of my
Ph.D. work, an activity-based model for the Netherlands already existed, however, a fully-operational activity-based model for Flanders was not available. Therefore, the purpose of this research was to implement, validate and employ an activity-based model for Flanders so that this model could be used as a starting point for other researchers to estimate traffic safety, environmental and health effects in Flanders.

1.2 Contributions of the dissertation

This research is part of a larger and integrated model for evaluating the safety and environmental effects of traffic policy measures. Integrated in this context means that different elements (activity and travel behavior, route choice behavior, traffic behavior) and effects of the transport system (road safety, emissions and human health) are modeled in an integrated way, i.e. their relationships are modeled explicitly. This makes it an interdisciplinary model. As a result, the model provides a means for better evaluating the trade-offs between different policy domains, i.e. the net effect of a particular policy measure can be calculated by demonstrating the impact of the measure on each of the outcomes (road safety, emissions and human health).

The integrated model is innovative because, this far, no model exists that encompasses the complex and interrelated set of decisions into one body, i.e. the impact of traffic policy measures on activity behavior (which activities will be performed where, when and with whom), transportation behavior (modal choice), traffic behavior (route choice) and thus ultimately also on road safety and the environment and on human health. The rich information provided by activity-based transportation models enables a more accurate and scientifically sound approach to predict more accurately the expected number of crashes and the amount of emissions and thus finally also the effects on human health (cancers, hospital treatments, lost quality of life, etc.).

In order to achieve the goals described above, this dissertation proposes the development of an innovative integrated GPS-enabled survey tool and an activity-based simulation framework. Both instruments form the starting point for the integrated model, described earlier, that aims at evaluating the safety and environmental effects of traffic policy measures.

With regard to the GPS-enabled survey tool, this kind of electronic tool technologically allows for a new way of measuring travel behavior that also provides travel data of higher quality than regular paper-and-pencil type of diaries since if-then rules can be enforced on the scene (in contrary with desktop
computers) during the survey period in order to intercept and rectify logical respondent errors.

Regarding the activity-based simulation framework, it will be demonstrated that with this framework it becomes possible to implement, extend and modify activity-based models such that the time-consuming act of building a complete model (with accompanying database) from scratch can be circumvented. Moreover, this framework also allows for rapid employment of activity-based models for new study areas so that the threshold for these kind of models shrinks tremendously. In line with the latter advantage, with this general simulation framework, any activity-based travel survey can be used with a minimum of processing time in order to (re-)train the transport model inside the framework. In this dissertation, the activity-based simulation framework, brought up here, will be employed on our study area, namely Flanders and the outcomes (effects of policy measures) are used as input to the integrated model for evaluating the safety and environmental effects of traffic policy measures. As specified before, these safety and environmental effects are assessed by other researchers collaborating on the integrated model.

1.3 Organization of this manuscript

The remaining part of this thesis is organized as follows. Chapter 2 first describes the application of a GPS-enabled PDA tool for surveying travel respondents in order to collect activity-based data. In chapter 3, the implementation of a general activity-based simulation platform is described together with its future trajectory as the development of this platform is conceived as a non-stop process. In chapter 4, the implementation of an activity-based model into the activity-based simulation platform is described followed by a validation of this model for Flanders. Chapter 5 then gives an example of the implementation and employment of a travel scenario where the impact of telecommuting on total vehicle travel is estimated and compared with the outcomes of a more ordinary method. Next, chapter 6 discusses the outcomes of an electric vehicle scenario where FEATHERS is being used in order to predict the electrical vehicle power demand for Flanders. Finally, the last chapter (chapter 7) discusses avenues of future research and subsequently, further improvements to the activity-based model inside the simulation platform are suggested.
References


Chapter 2  Quality assessment of location data obtained by the GPS-enabled PARROTS survey tool

This chapter describes the development and application of a dedicated tool that can be used for collecting activity-based data, together with GPS location data. Small, light PDAs are ideal for conducting in-person surveys at malls, amusement parks, movie theaters, airports, and other public locations. To this end, the survey software on PARROTS offers advanced features for conducting both simple and complex interviews. Conducting surveys by means of PARROTS however is not a goal in itself. In contrary, activity-based diary data sets, obtained by this survey tool, are meant for training activity-based models for Flanders or other study areas.


A custom tool, PARROTS (PDA system for Activity Registration and Recording of Travel Scheduling) was developed to collect activity-travel diary data and Global Positioning (GPS) based location data during trips. This tool is currently deployed in a survey that is carried out on 2,500 households in Flanders (Belgium). To be able to judge the effect of the PARROTS tool on the quality of activity-travel diaries, a paper-and-pencil diary was designed and deployed as well.

This chapter discusses the impact on travel and location data quality of a GPS-enabled PDA data collection tool featuring consistency checks. This impact includes both activity-travel diary data quality and GPS data quality. The quality of the GPS-based location data collection is assessed in terms of both quantity and quality of the obtained GPS logs. The location data quality is obtained using the fraction of GPS logs containing actual location information. Based on the GPS logger activity, a usage profile was obtained and compared to the location data resulting from the survey.
Based on the analyses presented above, it is concluded that PARROTS provides both high quality activity-travel diary data and GPS-based location information, while keeping the burden for the respondents at an acceptable level.

2.1 Introduction

In the context of location based services, an understanding of the whereabouts and the (planned) activities of potential customers can constitute a commercial asset. Activity-based models predict on the level of the individual which activity is conducted where, when, for how long, the transport mode involved, and with and perhaps for whom the activity is conducted. This detailed data allows for location based service providers to tailor their services to the needs of consumer segments or even to the individual customers. However, activity-based analysis requires detailed information in the form of activity-travel or time use diary data in order to calibrate the models. Traditionally, travel survey data have been collected by paper-and-pencil or over the phone.

The need for these detailed data, combined with the respondent burden and the error proneness of the traditional survey methods, led to the development of computer assisted diary instruments: MAGIC (Ettema et al., 1994), CHASE (Doherty and Miller, 2000), iCHASE (Lee et al., 2000), CHASE_GIS (Kreiz and Doherty, 2002), REACT (Lee and McNally, 2001) and VIRGIL (Janssens et al., 2004) to name a few.

More recently, considerable attention among academics and professionals alike has been paid to the use of the Global Positioning System (GPS), first as stand-alone technology, later embedded in cellular phones and Personal Digital Assistants (PDA). The potential advantage of such technology has been well reported in the literature e.g., (Wolf et al., 2001), (Wolf and Oliveira, 2003), (Asakura and Hato, 2006), (Bullock at al., 2003). However, even in the best case, GPS technology only allows one to trace the movement (routes) of travelers. It should be realized that route choice information is not the only and not necessarily the most important piece of data for activity-based analyses and models. Activity-based models predict which activity is conducted where, when, for how long, the transport mode involved, and with and perhaps for whom the activity is conducted. Many of these choice facets are not captured by GPS technology. At best, one can try data fusion approaches to extract such additional data (Nakamya, 2010). Data fusion approaches, also referred to as statistical matching, entails carrying out a statistical integration of information
that has already been collected. For instance, addition of variables can be the purpose of this match.

To avoid relying solely on such data fusion approaches, an activity-travel diary survey tool, called PARROTS (PDA system for Activity Registration and Recording of Travel Scheduling) was developed (Kochan et al., 2006). PARROTS runs on a PDA and uses GPS to automatically record location data. The PDA was programmed such that besides automatically registering its location, respondents can provide information about their activity-travel behavior as well. An important advantage of PDA-based collection of diaries is the possibility to guide the input process in order to assist the respondent and to avoid inconsistencies and other types of anomalies. Given the portability of a PDA compared to laptops and other electronic data collection tools, PARROTS is well-suited for in the field activity and travel registration. As PARROTS is designed to be run on a PDA that has (embedded) GPS, it enables automatic registration of the spatial dimension, or the location component of the activities, which proves to be difficult to collect using the traditional paper-and-pencil survey methodology. In regard with this last remark, it should also be stated that the PARROTS survey tool can also be used by researchers in order to create a model capable of deriving activity-based schedules based on GPS tracks, which is an intriguing research topic. GPS tools are able to gather location and timing information in a passive way on a continuous basis. Put in another way, respondents or travelers do not have to fill in this information. Therefore, if it becomes possible to derive high-level activity-based schedules based on individual GPS trajectories, then gathering the respondent data, ideally only GPS, will not be a demanding and burdensome task. In the meanwhile, PARROTS may constitute an intermediary tool between a traditional activity-based survey and future GPS-based gathering of respondent information. As PARROTS collects activity-based survey data together with GPS location data, the results of a model that determines activity-based data based on GPS tracks can be compared and validated with the recorded activity-based data from this tool’s respondents. However, for now, this comparison is left for future research.

In this chapter, some results of the use of PARROTS in a survey of 2,500 households in Flanders (Belgium) are presented. This means that this study is probably one of the largest using GPS and one of the few that the authors are aware of that uses GPS-enabled PDA’s. In particular, the data quality of both the data inputted by the respondents and the location data logged by GPS is investigated. In addition to investigating data quality, the impact of using PDA-
technology on user response rates is examined and compared to response rates obtained for the paper-and-pencil survey tool. Based on these differences, the performance of PARROTS as an activity-based survey data collection tool is assessed.

2.1.1 PARROTS: An activity-travel diary survey tool on a GPS-enabled PDA

The goal of PARROTS is to implement an activity-travel diary on a PDA with an integrated GPS logger to automatically capture location information. The collected data consists of data that will be used to build a dynamic activity-based model called FEATHERS. Part of the collected data consists of the data regarding replanning and execution of activities and trips that is manually input by the respondents. The other part of the data consists of location data that is automatically collected using GPS. Both planned and executed activities and trips are registered with the possibility to alter the attributes of the planned activities. This way, information is collected regarding the decision and scheduling processes, which results in an evolution from an intention to execute some activities and trips to an executed activity-travel diary. A similar philosophy was adopted in (Rindsfüser et al., 2003).

If the PDA is switched on, PARROTS starts automatically and the main GUI is shown (Figure 1, Left). Whenever PARROTS is active, the GPS logger is operational logging the GPS location strings at a configurable rate. This way, the respondent can automatically record route and location information using GPS.

![Figure 1 PARROTS main GUI (Left), planning GUI (Middle) and diary GUI (Right). In order to facilitate the distinction between planned and executed activities, planned activities are depicted in red and are wider than executed activities, which are depicted in blue.](image)
by keeping the PDA switched on. The ‘Vergrendelen’ button provides a screen lock functionality such that the PDA can safely be stowed during the trip. The PDA is switched off using the ‘Afsluiten’ button.

The buttons ‘Planning’ (Planning) and ‘Dagboekje’ (Diary) are used to launch the graphical user interfaces (GUI) to input planned and executed activities and trips respectively. In the planning GUI, the registered activities and trips are grouped by day and are listed in the same order they were entered (Figure 1, Middle). In the diary GUI, the executed activities and trips are displayed in a layout that resembles an agenda (Figure 1, Right).

Whenever an activity or trip is registered in PARROTS, a number of attributes for this activity or trip are collected using a customized GUI. The most important activity and trip attributes PARROTS collects are: activity type, date, start and end time, location, mode of transportation, travel time and travel party. Concerning the latter attribute, travel party, remark that during the survey period 2 household adults are asked to fill in separate surveys and because of the fact that both adults have to start at the same time, household interactions are captured to some extent. In the survey, if activities are being described in the diaries, respondents have to report if the considered activity is executed in the company of other people. The PARROTS application allows for a detailed description of those companions.

Also note that although PARROTS collects location data using GPS, the location of activities is still queried. The match between location information provided by the respondent and the location logged by GPS can be verified during post processing in order to validate the data. Replanning information is collected by allowing the respondent to update all attributes and by querying for the reasons of the registered changes.

2.2 Data collection

Activity-based models predict which activity is conducted where, when, for how long, the transport mode involved, and with whom the activity is conducted. In order to collect the required data for building an activity-based model for Flanders, a large scale survey is being conducted on 2,500 households.

Because of limited budgetary funds, besides PARROTS, a traditional paper-and-pencil survey was designed as well. This complementary survey allows of comparing the PARROTS data quality with a more established and conventional survey. Therefore, similar to PARROTS, in the paper-and-pencil survey both the
planned and executed activities and trips are registered in a separate booklet. To obtain a link between planned and executed activities, respondents were asked whether the executed activity was planned and if it was, the sequence number of the corresponding activity in the planning booklet was asked. In order to limit the respondent burden, only replanning information on the reason for differences in duration of planned and executed activities was queried.

The PARROTS and the paper-and-pencil survey tools are both being used on half of the 2,500 surveyed households. As the survey is currently ongoing, the results presented in this chapter are based on 816 surveys, 440 using paper-and-pencil and 376 using PARROTS, collected so far. By comparison of the data collected with PARROTS with the data collected using the traditional paper-and-pencil approach, the impact of PARROTS on response rates and data quality can be investigated.

2.3 Household selection

The target population in this survey was defined as “all people residing in Flanders, regardless of their place of birth, nationality or any other characteristic”. However, the population that was reached by the study, i.e. the study population, does not cover the target population completely. The following categories of persons are included in the target population, as defined above, but are not included in the study population: homeless, illegal refugees, people residing in an institution (elderly people living in old people’s homes, student homes, orphanages, nursing homes and psychiatric nursing homes), people residing in a religious community or cloister with more than 8 persons, and people residing in a prison. Thus, only private households were considered, no collective households.

To get a representative sample of the population, the survey was set up in such a way that the shares of three socio-demographic variables (age, gender and occupational status) were the same, both in the survey and population. This guaranteed equality of the population composition. However, previous studies have demonstrated that some socio-economic classes of society, like older-age and lower-education groups, may be more reluctant towards using computer-assisted instruments for the data collection and therefore may result in a slightly biased composition of the population sample.

In order to solve the problem of refusing or non-contactable households, the decision was made to replace these households by replicate households, a process which in survey literature is called field substitution. These replicate
households are not randomly chosen, they have 4 characteristics in common with the refusing household: they live in the same municipality as the refusing household, the age of the reference person falls within the same age category as that of the initially chosen household (reference household), the gender of the reference person is the same and the household composition is the same as that of the reference household. The latter is to ensure that people show the same mobility characteristics, since a household without children will probably show different mobility behavior when compared to a household with 3 children.

When a chosen reference household refuses to take part in the survey, or when it is unable to be contacted in any way (either by phone or via regular mail), then the household will be replaced by the next one in the list. If the same applies to this household (i.e. when it also refuses to take part in the survey, or when it could not be contacted) it will be replaced by the next in the list. This procedure will go on until the list of 5 households has run out. If none of the households is prepared to cooperate, no other replacements will be sought. As soon as a household is willing to participate in the survey, there is no need to replace the household anymore. The possible remaining households from the list of 5 will receive the status ‘not activated’ and they are not incorporated in the remainder of the project.

2.4 Analyses and results

This section reports on the following analyses: the analysis of the impact of GPS-enabled PDA technology on the user response rates inclusive a comparison with paper-and-pencil response rates, the impact of PDA technology on the quality of the collected location data and PARROTS usage patterns.

2.4.1 Impact of GPS-enabled PDA technology on user response rates

Households selected to participate in the survey were sent a letter stating the survey purpose and the survey method (paper-and-pencil vs. PDA). Two days later, they were contacted by telephone in order to ask for their participation. It is obvious that in order to survey 2500 households, a lot more households had to be contacted because many potential respondents were not prepared to participate in the survey. Indeed, 21% of 5537 contacted households so far was willing to take part in the survey using the paper-and-pencil procedure. In terms of percentage, this is slightly higher than for the PDA procedure (18% of 3319
households), which indicates that a number of people are reluctant to join a survey using less ubiquitous technology.

Following on these facts about participation shares, it should also be noted that quite a lot of respondents stopped participating during the survey period. However, when both survey methods are compared, it is clear that the number of drop-outs is much lower in the case of the PDA where only 38 % or 232 respondents stopped during the survey period as opposed to the paper-and-pencil survey where 62 % or 724 respondents dropped out. This substantial difference could be due to the fact that the burden for filling in the paper-and-pencil survey is much higher than in the case of the PDA where respondents are assisted when entering and editing information.

The respondents that indicated during the telephone conversation that their refusal to participate in the survey was related to being required to use a PDA were proposed to participate in the paper-and-pencil based survey. Approximately 4% of the respondents that were contacted to take part in the survey using a PDA preferred to switch to the non-PDA procedure during the telephone conversation. It can be assumed that this switch to non-PDA is induced by an aversion towards PDA technology.

During the PDA delivery, and after having the PARROTS tool explained and demonstrated to them, 3% of the respondents decided to switch to the non-PDA procedure. From the experiences during the PDA deliveries, it was learnt that the majority of these people deem the PDA tool either too complex or too intrusive.

Since the survey spans seven days, requires keeping track of and logging of detailed activity-travel information and requires carrying a GPS-enabled PDA during each trip, the respondent burden is rather high. Some respondents stop reporting activities and trips before the survey period is over. Hence, the data returned needs to be investigated for respondent activity in order to determine respondent attrition.

Figure 2 depicts for the datasets collected with paper-and-pencil and with PARROTS the average number of reported executed trips per person and per survey day as a fraction of the number of trips per person for the first survey day. The average number of reported executed trips for survey day 1 is 2.82 and 3.44 for the paper-and-pencil and the PARROTS survey tools respectively. From these averages and from Figure 2, it can be concluded that on average more trips are reported using PARROTS and that the number of reported trips
using PARROTS remains more stable throughout the survey. This effect cannot be due to day of the week effects as the starting days of the surveys were randomized.

Based on the above observation, in combination with the observation that the fraction of active respondents decreases by 20% over the survey period (Bellemans et al., 2008), it can be concluded that despite respondent attrition, respondents who continue to report trips keep reporting more or less the same number of trips each day. Hence, it makes sense to run the survey for this extended period of time as there is a significant number of respondents that provides usable data throughout the whole period.

Not only registering the activities and trips in the PARROTS tool poses a burden on the respondents, but also carrying the PDA during all travel is experienced as a large burden by many respondents. In the remainder of this subsection, the response rate in terms of using the PDA as a location logger is investigated.

During the trips, PARROTS captures the location data that is provided by the GPS receiver and stores it in a file. An analysis of the quantity of GPS logs as a function of the survey day indicates the way respondents deal with the burden of carrying the PDA around. Figure 3 shows the total number of GPS strings recorded by all respondents as a function of the survey day. The absolute values are converted to a fraction of the number of strings of the first survey day (7,205,550 strings). It is clear that the total number of registered strings decreases monotonically as the survey progresses. From Figure 3 it can also be observed that the number of logs per person stays approximately constant for
the first four survey days but starts rapidly decreasing starting from the fifth survey day. Hence, the decrease in logged GPS strings as the survey period progresses results from a combination of respondents dropping out of the survey and active respondents logging less.

![Graph showing the evolution of the total number of GPS strings logged by all respondents and the average number of strings logged per person for each survey day, plotted per survey day, and expressed as a fraction of the corresponding value on survey day 1.](image)

An explanation for the reduction of the average number of GPS strings logged per person, despite the continued registration of activities and trips, can be sought in the additional burden of being required to carry the PDA tool and to switch it on during trips. An additional burden is introduced by the battery of the PDA, which has an autonomy of approximately 6 hours in logging mode.

### 2.4.2 GPS-based location and travel data quality

This subsection deals with the quality of the travel and location data that is collected using the PARROTS tool. First, the quality of the GPS-based location data throughout the survey period is investigated. Next, an analysis of underreporting of trips as a function of time of day is conducted. This subsection is concluded with an investigation of the relation between time of day and the availability of valid location information in the GPS logs captured during reported trips.

The quality of the location data collected by GPS is influenced by how the respondents use the PDA tool. The data quality of the registered GPS strings can be expressed in terms of the availability of location information in the strings. PARROTS is designed to read and store all information provided by the GPS receiver. This data is provided over the (internal) serial interface according to
the industrial NMEA standard (NMEA, 2007). However, whenever the GPS receiver is unable to determine the location (e.g. due to being indoors), NMEA strings are provided without any location information. These ‘empty’ strings are logged by PARROTS as well.

Although the respondents are made aware of the fact that not stowing the PDA too far away positively impacts the quality of the GPS data, no guidelines are provided on how the device should be carried during trips in order not to needlessly burden the respondents even more. Based on the fraction of the number of NMEA strings containing location information, relative to the total number of logged NMEA strings, an indication of the quality of the automatically collected GPS data can be obtained. In total 36,940,569 strings were logged in the current dataset and in 38% of the strings location information was present.

Figure 4 depicts for every survey day the fraction of the number of NMEA strings containing location information over the total number of NMEA strings logged for that survey day. The increasing trend of the fraction towards the end of the survey could be intuitively explained as follows: near the end of the survey a higher fraction of motivated respondents remains and near the end of the survey respondents need less time inputting their data in the PDA, resulting in less NMEA strings being logged indoors during the imputation process.

In order to gain insight in the potential of the PARROTS tool as a means to collect travel information exclusively based on the GPS logs instead of relying on the respondents to explicitly input trip information, the fraction of the reported trip time that no GPS logs were available was investigated. This measure
provides a crude estimate of the extent to which location and trip information would be missing if it were not surveyed but merely captured using GPS. It was found that in 52% of the reported trip time no GPS logs were present. A major contribution to this fraction was found to be respondents forgetting to take the PARROTS tool with them during a trip.

Figure 5 shows the evolution of the fraction of the reported trip time that no GPS logs were available as a function of time of day. It can be observed that in the late evening and during the early morning this fraction increases dramatically, indicating poor performance of the GPS logs as a means to detect trips at night. It needs to be noted however that as can be seen from the solid line in Figure 5, the number of trips reported during these times is very low and sometimes even equal to zero. Closer examination of the data unveiled that in the majority of the trips reported between 12 am and 5 am no GPS logs were available during the whole trip. During the day time, an offset between the reported trip start and end times constitutes another contribution to the fraction of above. Further investigation of the relative contributions of both phenomena to the fraction of reported trip time without GPS logs requires a reliable trip detection algorithm and is subject to further research.

As a final means to assess the location logging performance of the PARROTS tool during trips the average fraction of the number of GPS strings that contain valid location information and that were logged during reported trips over the total number of GPS logged during the trips was computed. It was found that 70% of the logs during reported trips contained valid location information. Compared
with the overall average fraction of 38% this indicates that people indeed tend to log their trips using PARROTS, yielding valid location information.

### 2.4.3 PARROTS usage patterns

This subsection analyses the PARROTS usage patterns based on the detailed logs generated by PARROTS.

As PARROTS is a portable tool and as it provides replanning abilities, PARROTS can be used for in the field imputation. By investigating the time stamps recorded for all data saved in PARROTS by all respondents, the usage pattern of PARROTS can be determined. In Figure 6 the total number of records stored in PARROTS by all respondents is plotted as a function of time of day (as opposed to the number of trips that was reported in Figure 5). The average number of records inputted during a 15 minute interval in Figure 6 is 420. It can be observed that during the night (1h – 6h), activity is very low and the activity increases in the morning to a level near the average activity level. There is a small dip in the activity in the afternoon (14h – 15h) and a clear activity peak during the evening (18h – 23h). The activity peak during the evening can be explained by two phenomena; first, the respondents were explicitly asked to review their planning for the next day in the evening and second, part of the respondents will not register their activities immediately but register them in the evening as they are revising their planning for the next day. However, given the sustained level of activity on the PDA throughout the day, it can be concluded that a significant number of respondents uses PARROTS to register activities and trips in the field.

Figure 6 also shows the total number of NMEA strings that was recorded as a function of time of day. It can be observed that conform Figure 4, the majority of registered NMEA strings does not contain location info. The fraction of the number of NMEA strings with location information, compared to the total number of NMEA strings varies with time of day. This can be interpreted as follows. Although very little activities are registered, many NMEA strings are logged during the night. This can be attributed to respondents keeping the PDA indoors (no reliable GPS signal) and switched on during charging at night. During the day, the fraction of NMEA strings containing location information increases, since more people are recording their trips during the day. During the peak of the imputation activity in the evening the fraction decreases again, which is partially caused by respondents imputing their activity-travel data while being indoors.


Figure 6 Plot of the number of records inputted in PARROTS by all respondents and as a function of time. The records are aggregated in 15 minute bins. Evolution of the number of NMEA strings (with and without location information) logged by all respondents and as a function of time of day.

2.5 Conclusions and discussion

In this chapter, some results of one of the largest activity-travel surveys using GPS-enabled personal digital assistants (PDA) were presented. The data were collected in the context of the development of the FEATHERS model, a dynamic activity-based model of transport demand for Flanders. A custom GPS-enabled PDA-based activity-travel survey tool, PARROTS, was developed and the quality of the obtained trip and location data was investigated.

The PARROTS response rates for a large survey in Flanders were investigated and compared with the response rates using the paper-and-pencil tool in order to check whether a negative attitude towards the use of PDA technology exists or a higher burden is experienced in using the tool. It was found that the response rate for PARROTS was only slightly lower than for the traditional approach during the recruitment process. However, during the survey period fewer drop-outs were registered in case of the PDA survey, indicating that the burden for filling in this kind of survey is lower in comparison with the paper-and-pencil approach.

During the survey, the reported number of executed trips was more stable throughout the survey and on average more trips per person were reported for surveys using PARROTS.

The analysis of the data quality of the GPS logs in terms of the number of logged NMEA strings showed an attrition of the total number of NMEA strings logged as survey days pass. This is caused by respondents dropping out of the survey on
the one hand and by a decrease of the number of logged NMEA strings per person starting from the fifth survey day on the other hand.

The analysis of the data quality of the GPS logs in terms of the fraction of NMEA strings containing location information versus the total number of logged NMEA strings showed that the data quality increases as more survey days pass. The evolution of this fraction as a function of time of day was correlated to the usage pattern of the PARROTS tool.

It was found that during slightly over half the total reported trip time no GPS logs were available. This phenomenon can be attributed to failure of the respondents to use the PARROTS tool, but also partially by errors in reporting trip start and end times.

Analysis of the PARROTS activity patterns revealed the use of PARROTS as an in the field activity and trip registration tool, although this modus operandi was on a voluntary basis.

Considering survey technology, important advantages of PARROTS over paper-and-pencil are the availability of detailed replanning and location (GPS) information, the checks on the data leading to higher data quality and the immediate electronic availability of the data.

If the results of this study are replicated in future similar research, these findings illustrate the potential advantage of using instruments such as PARROTS in order to obtain location and trip information during surveys.
References


Chapter 3  Implementation framework and development trajectory of the FEATHERS activity-based simulation platform

The aim of this chapter is to introduce the FEATHERS activity-based simulation platform. In general, with its modular structure, FEATHERS is meant to accommodate different activity-based models so that this framework can be used as a research instrument for transportation researchers. Basically FEATHERS provides a toolbox to implement large-scale activity-based transportation simulations. Currently FEATHERS offers a means for demand modeling as well as methods to analyze the output generated by the modules.


In order to facilitate the development of dynamic activity-based models for transport demand, the FEATHERS framework was developed. This framework suggests a four stage development trajectory for a smooth transition from the four-step models towards static activity based models in the short term and dynamic activity based models in the longer term. The development stages discussed in this dissertation range from an initial static activity-based model without traffic assignment to ultimately a dynamic activity-based model incorporating rescheduling, learning effects and traffic routing.

To illustrate the FEATHERS framework, work that has been done on the development of both static and dynamic activity-based models for Flanders (Belgium) and the Netherlands is discussed. First, the data collection is presented. Next, the four stage activity-based model development trajectory is discussed in detail.

The presentation of the modular FEATHERS framework discusses the functionalities of the modules and how they accommodate the requirements imposed on the framework by each of the four stages. This chapter then concludes with a brief overview of the travel demand management strategies that can be addressed within the FEATHERS framework.
3.1 Introduction and problem statement

Over the last decade, several micro-simulation models of activity-travel demand (e.g. Cemdap (Bhat et al., 2004), Famos (Pendyala et al., 2005) and ALBATROSS (Arentze and Timmermans, 2000, 2005a)) have become operational. It led to an increased concern to move the currently operational, and newly developed activity-based models, into practice. These activity-based models have the advantage that several interdependencies between choices making up an activity travel patterns, allowing the estimation of policy effects, are incorporated in the model. Especially in Europe, advanced tour-based models also introduced already some of these interdependencies and hence operational applications of models that involve micro simulation of activity-travel patterns have remained limited. While several practical reasons for this slow dissemination can be thought of (see Davidson et al., 2007), one of the main challenges faced by the travel demand forecasting industry is the ability to rapidly deploy several new theoretical advances in a time and cost efficient manner. While small laboratory experiments are needed for exploring these theoretical advances from a scientific point of view, it is of utmost importance to rely upon a sound basic platform where several of these advancements can serve as add-ons, if one is concerned about the final operationalization of the developed tools. A nice example of such a platform is the open source MATSIM-T project (Multi-Agent Transport Simulation Toolkit) where some basic functionality of a multi-agent micro-simulation for transport planning has been implemented (Balmer et al., 2006), featuring implementations of dynamic traffic network assignments.

Taking the above into account, the idea was conceived in Flanders (Belgium) to develop a modular activity-based model of transport demand, where the emphasis is on the one hand on methodologically innovative (dynamic) activity-travel demand generation and on the other hand on the practical use of the system by practitioners and end users. The modularity of the software is assured by design in using the object-oriented paradigm, allowing for a more flexible application programming structure. Similar initiatives, like for instance the Common Modeling Framework (CMF) (Davidson et al., 2007) have recently been developed for trip-based and complex tour-based models, highlighting the potential relevance of such a modular system.

A four-stage development trajectory has been postulated in the context of FEATHERS: stage 1 is the development of a static activity-based model; stage 2 is the development of a semi-static model accounting for evolutionary and non-
stationary behavior (for instance different time periods during the day, different days, etc.); stage 3 is the development of a fully dynamic activity-based model accounting for short-term adaptation behavior and learning and stage 4 is the development of a full dynamic agent-based micro-simulation framework involving traffic and route assignment on a microscopic level. This development trajectory is highly innovative due to the fact that most micro-simulation models of activity-travel demand are only situated in stage 1. Indeed, in terms of short term dynamics in activity-travel patterns and travel execution (stage 3 and 4), activity-based models at their current state of development have little to offer. Apart from the MATSIM-T framework, the aggregate impact of individual-level route choice decisions on activity generation and rescheduling behavior is not included in activity-based models. Issues such as uncertainty, learning and non-stationary environments are also not considered. Of course, there is a wide variety of literature available about traffic assignment, route and departure choice models, but at their current state of development it is fair to say that the behavioral contents of these models from an activity-based perspective are still relatively weak and that comprehensive dynamic models are still lacking.

The multi-stage process outlined above is crucial in understanding and accounting for end-user (Flemish government, environmental agencies, public transport providers) concerns, where currently a traditional four-step modeling approach is used in Flanders. Moving directly towards a full agent-based micro simulation framework is not appealing from an end-user point of view. Therefore the multi-stage development trajectory bears resemblance with the waterfall model (Royce, 1970), which is a sequential model specifically designed for software development in which development is seen as flowing steadily downwards through the phases of requirements analysis, design, implementation, testing, integration, and maintenance. The research described in this chapter has been given the acronym FEATHERS\(^1\) and the application area is in line with other existing activity-based models but is extended towards environmental, health and in the medium term also traffic safety applications.

In order to succeed, one obviously needs considerable amounts of data. The remainder of this chapter therefore first discusses an extensive hybrid, multi-method data collection approach which is necessary for the operationalization of the model. The discussion is mainly about data requirements in terms of travel

\(^1\) The development of the Feathers (Forecasting Evolutionary Activity-Travel of Households and their Environmental RepercussionS) framework was funded by the Flemish government.
demand; supply data is available within the existing four-step models and can be derived from a number of alternative data sources. Section 3 discusses the methodological challenges and techniques related to the multi-stage development trajectory. The modular framework that has been implemented to translate the methodological challenges to an operational platform are discussed in section 4. Section 5 then describes different application areas and in the final section conclusions are drawn and topics for future development and research are discussed.

3.2 Data collection challenges

3.2.1 Introduction: Data for modeling dynamic activity-travel behavior

The data requirements of both the static and the dynamic model applications that have been as outlined above, constitute a real challenge. Especially the dynamic activity-travel model application needs considerable additional effort in terms of data collection. Indeed, a dynamic model system needs to address the problem of activity rescheduling behavior, assuming for instance that daily and multi-day activity re-scheduling processes depend on history, available time, and time pressure. Secondly, a dynamic model ideally also needs to address the problem of long-term dynamics. Following Waerden, Borger and Timmermans (2003a, 2003b) and Klökner (2004) it is assumed that critical incidents and key lifecycle events may prompt or force travelers to change their habitual behavior. Moreover, lifecycle events, such as reaching the age to have a driver’s license, leaving home, getting married, first child, retirement, new job, new house, etc. may lead to changes in available resources and choice options. In turn, these may lead to changes in activity-travel patterns. Thirdly, and critical for linking different time horizons, is the notion that travelers cope with a non-stationary life trajectory. The non-stationarity can be caused by regularly occurring events such as summer holidays, religious holidays, yearly returning long week-ends or typical days like labor day, etc., but also on changing needs based on their activity patterns and their social network.

Therefore, in addition to traditional activity-travel diaries, the model needs data on activity (re)scheduling decisions of individuals, data on household multi-day activity scheduling, data on life trajectory events and how they impact activity-travel decisions, data on how individuals learn and data on how short-term dynamics are linked to long-term decisions. Such data are available in typical
cross-sectional travel surveys, time use surveys and some need to be collected by means of a panel survey. In fact, in Flanders, neither data on activity-travel schedules, nor on panel surveys are available.

The data collection therefore involved an extensive hybrid, multi-method approach. Data on activity-travel patterns were collected using a combination of paper-and-pencil and GPS/PDA devices. The reason for this combination of two data collection systems is the fact that not all respondents are fond of new technologies or are even capable of filling in diaries on electronic devices, especially the elderly. However, this hybrid approach does not raise any issues on the level of model calibration, as the attributes describing diaries and the components of those diaries, being activities and journeys, are similar between both data collection methods. Therefore, the data sets obtained in both approaches can be integrated into a master data set.

This data collection differed from the usual activity-travel diaries in that data were collected for a week as opposed to one or two days, for two members of the household, as opposed to a single representative. It also included questions about activity plans and execution, and reasons for change/adjustment. Moreover, face-to-face contact was established with the participants to collect data about their social network. Second, data on traveler strategies to cope with unexpected events during execution of an activity agenda were collected using stated adaptation experiments, based on fractional factorial designs to allow an unbiased estimate of effects on the rescheduling of activity-travel patterns. Respondents were asked to imagine hypothetical scenarios in which they experience a delay of a specified magnitude when conducting a specified activity, involving a certain travel time at a specified location using a specified transport mode. Third, data on lifecycle events were collected using an internet-based retrospective survey, asking respondents which lifecycle events they experienced and when. As an alternative for this survey, additional data on regular events were captured using a vehicle embedded data acquisition device, allowing for long-term panel data collection. The latter study allows for deriving the sequence of both lifecycle and regular events and the associated attributes and for capturing long-term travel information.

### 3.2.2 PDA-enhanced data collection

The use of GPS-enhanced data collections (as reported in several application areas; see for instance Goulias and Janelle, 2006) is particularly important in our dynamic application case because rescheduling decisions are probably not
only undertaken at the level of activity, but are consequently probably also reflected in travel execution (e.g. other routes taken). Furthermore, automated data collection techniques are particularly well suited to obtain data which require a significant effort from the respondent like for instance the rescheduling of activities for the development of dynamic models.

To this end, an automated activity-travel diary survey tool named PARROTS, which is the acronym for PDA (Personal Digital Assistant) system for Activity Registration and Recording of Travel Scheduling, uses the Global Positioning System (GPS) to automatically record location data (Bellemans et al., 2008). The PDA was programmed such that besides automatically registering its location, respondents can provide information about their activity-travel behavior as well. Both planned and executed activities and trips are registered with the possibility to alter all the attributes of the planned activities. This way, information is collected regarding the decision and scheduling processes, which results in an evolution from an intention to execute some activities and trips to an executed activity-travel diary. A similar philosophy was adopted in Rindsfüser et al. (2003). Replanning information in our case however is collected by allowing the respondent to update all attributes and by querying the reasons of the registered changes.

If the PDA is switched on, PARROTS starts automatically and the main GUI is shown (Figure 1, Left). Whenever PARROTS is active, the GPS logger is operational logging the GPS location strings at a configurable rate. Hence the respondent can automatically record route and location information using GPS
by keeping the PDA switched on. The ‘Vergrendelen’ button provides screen lock functionality such that the PDA can safely be stowed during the trip. The PDA is switched off using the ‘Afsluiten’ button.

The buttons ‘Planning’ (Planning) and ‘Dagboekje’ (Diary) are used to launch the graphical user interfaces (GUI) to input planned and executed activities and trips respectively. In the planning GUI, the registered activities and trips are grouped by day and are listed in the same order they were entered (Figure 1, Middle). In the diary GUI, the executed activities and trips are displayed in a layout that resembles an agenda (Figure 1, Right). The difference in both GUI’s stems from the fact that providing an agenda layout for planned activities is reported in literature to bias the collected data due to visual feedback of the interface (Zhou and Golledge, 2007).

Whenever an activity or trip is registered in PARROTS, a number of attributes for this activity or trip are collected using a customized GUI. The most important activity and trip attributes PARROTS collects are: activity type, date, start and end time, location, mode of transportation, travel time and travel party. Note that although PARROTS collects location data using GPS, the location of activities is still queried. The match between location information provided by the respondent and the location logged by GPS needs to be verified during post-processing in order to validate the data.

PARROTS features several data consistency checks, the most important of which are: checks that all required data are available and feasible, checks on overlaps and/or gaps on the time axis and checks for discontinuities in location. If any of the checks fails, the user is taken to the relevant GUI and an informative error message is shown. These checks are only enforced for activities and trips that are labeled as executed.

Respondents used the PARROTS tool during a one-week period. There are several reasons for this choice. First, when one is interested in capturing dynamic travel information, which is reflected in planning of activities, next to the execution of the planning, one should reckon that some activities have a rather fixed time point and hence can be planned a long time ahead. Second, some activities take place only once a week (i.e. non-daily shopping, sport activities) and our goal is to capture them as well. Finally, the choice for increasing the number of days per respondent reduces important dimensions of measurement error and marginal costs (Gershuny, 1992), and increases the usefulness of the data for analysis and model development.
Currently, about 900 persons have been questioned by means of the PARROTS tool, which means that this study is probably one of the largest using GPS in the field of activity-travel data collection and one of the few that we are aware of that uses GPS-enabled PDA’s. Also the weekly survey period makes it fairly unique in the field. In order to limit the costs incurred by delivery and pick-up of the PDA’s, a decentralized modus operandi was implemented. Co-workers living scattered over Flanders were recruited such that the travel costs could be minimized by optimizing the allocation of tasks to co-workers. The full procedure is administered and guided by means of a web-based application which has been specifically designed for this purpose.

More detailed analyses with respect to the collected data by means of PARROTS, like the analysis of the impact of GPS-enabled PDA technology on the user response rates, the impact of PDA technology on the quality of the collected diary data and PARROTS usage patterns, can be found in Bellemans et al. (2008). The functional design of the tool has been discussed in Kochan et al. (2006a, 2006b).

3.2.3 Paper-and-Pencil data collection

Another part of the sample (about 1500 persons; part of them belonging to the same households as the people who are questioned by means of the PARROTS tool, therefore enabling future modeling of intra-household decision making) are being questioned by means of a traditional paper-and-pencil method to account for the sample bias which is introduced when only computer-assisted forms of data collection are used. Furthermore, this choice enables us to carry out comparative studies with respect to the behavior of both target groups in terms of response rates, experience, etc.

The paper-and-pencil survey is a traditional activity-based travel survey, except for the fact that additional information was collected with respect to travel dynamics and rescheduling information. In the diary, the respondent fills out his personal activity-travel diary which includes all performed activities and journeys during one week. Similar to PARROTS, both the planned and executed activities and trips are registered in a separate booklet. To obtain a link between planned and executed activities, respondents were asked whether the executed activity was planned and if so, the sequence number of the corresponding activity in the planning booklet was asked.

Obviously, one cannot register detailed information about replanning behavior of a respondent for every choice facet (transport mode, duration, travel party,
location) as this would involve many manual checks on both booklets leading to unacceptable respondent burden. Hence, no detailed replanning information was gathered in the paper-and-pencil survey and only the reason for differences in duration of planned and executed activities was queried.

### 3.2.3 Social network data

At the time of the pick-up of the PDA, participants are also questioned about their social network (see section 3.1). This takes place during a short interview, using Wellmann’s instrument (Wellmann, 1979). In the application of this method, one gets information about egocentric social networks, using only one name generator per group. Questions were asked about people the respondent feels closest to; these could be friends, neighbors or relatives. The named alteri were recorded and described in detail for parents, brothers/sisters, other family members, friends, neighbors, colleagues and (sports-)club members.

### 3.2.3 Stated adaptation experiments

As mentioned previously, the goal of collecting data that measures the adaptation behavior of people, aims at developing a dynamic component that more efficiently captures the complex process of activity generation and therefore enhances the behavioral realism of activity-scheduling models. However, decisions that constitute the short-term adaptation process of people are not trivial to be solely captured by means of activity-travel diaries (e.g. activities that have been undertaken more than a week ago). For this reason, and for benchmarking purposes (with the weekly activity-diary information which has been collected), a specific internet-based stated preference experiment was undertaken to gather additional data. The stated-preference experiment provided each respondent with a number of hypothetical scenarios. 16 such hypothetical scenarios have been designed to collect the data necessary to assess the influence of the different choice facets on the activity utility. Respondents were asked - for each hypothetical scenario - to fill out the probability of performing an activity in the given situation. These probabilities were subsequently used to estimate utilities by means of a binary logit model. In order to isolate the effects of the different aspects that were investigated (i.e. duration, history, location, time of day, presence of accompanying persons and gender), fraction-utilities were estimated using the theory of the S-shaped utility functions.
While this technique can be used for different activities, it proved to be particularly relevant for flexible non-routine activities that are frequently scheduled. More detailed information about the analysis results of the collected data, can be found in van Bladel et al. (2006) and in van Bladel et al. (2008).

### 3.2.3 Event-based data collection

Finally, a dynamic model should ideally also account for a continuous change over time as a function of life trajectory events. In order to take the increased complexity of this changing life trajectory into account in future model development, data about these events also needs to be collected. Second, in such a dynamic modeling environment, researchers are also interested in changing behavior in the case of regularly occurring events (e.g. public holidays, anniversaries). Detailed studies were conducted in Cools et al. (2007) and in Verhoeven et al. (2006, 2007). Not only calendar events have an impact on travel demand, but also the environment has. It seems only logical that e.g. the choice of a transport mode can rely heavily on the weather or other seasonal components. An application of such an exercise was conducted in Cools et al. (2008).

An “ideal” scenario, of course, would be to keep the sample for a whole year and refresh it thereafter, hereby measuring people’s activity and travel behavior at each of the different events (ideally then before, during and after the occurrence of the key event). The solution which was implemented to capture this type of travel information in relation to regular and key events was to implement a long term panel survey that has been carried out by means of a VEDETT-device, which has been specifically developed for this purpose. VEDETT stands for a Vehicle Embedded Data acquisition Enabling Tracking & Tracing device. The logged in-vehicle data of the VEDETT tool can be transmitted to a central data collection point as a real time data stream or in batches. The integrated GSM technology also offers the opportunity to remotely update the VEDETT software. Software updates can involve an extension of the types of the data logged, augmenting the log frequency, etc. There is no need to take the vehicle out of circulation to carry out these updates. The system was installed and is currently running in 14 vehicles. A website application has been developed for the survey participants in order to communicate with the VEDETT device. On the website, the motivations or reasons behind all the trips made by car, and all the additional travel facets can be indicated. To minimize the burden for the participators in the long term field trial, addresses which are frequently visited,
can be designated as point of interests (POI’s). Second, the system is embedded with a self-learning capacity, to allow for some trips from two POI’s that are frequently made, to automatically suggest the motivation and amount of passengers. More detailed information about the VEDETT application can be found in Broekx et al. (2006).

3.3 Static and dynamic activity-based modeling

It was already stated in the introduction that the first step in the four-stage development trajectory of the model includes the development of a static activity-based model for Flanders. It has also been highlighted that advancing directly towards a full agent-based micro simulation framework is not appealing from an end-user point of view. The remainder of this section describes the current status and future research steps in the development of the four-stage trajectory.

3.3.1 Static activity-based modeling

The scheduling model that is currently implemented in the FEATHERS framework is based on the scheduling model that is present in ALBATROSS (Arentze and Timmermans, 2005a). Currently, the framework is fully operational at the level of Flanders. The real-life representation of Flanders, is embedded in an agent-based simulation model which consists of over six million agents, each agent representing one member of the Flemish population. The scheduling is static and based on decision trees, where a sequence of 26 decision trees is used in the scheduling process. Decisions are made based on a number of attributes of the individual (e.g., age, gender), of the household (e.g., number of cars) and of the geographical zone (e.g., population density, number of shops). For each agent with its specific attributes, it is for example decided if an activity is performed. Subsequently, amongst others, the location, transport mode and duration of the activity are determined, taking into account the attributes of the individual.

While the development of this model did not constitute important scientific and methodological challenges at this stage, the model was re-implemented from scratch using the modular FEATHERS platform (see section 4 for a more detailed description). Due to its current modular application, the model can be rapidly adapted for the area of Flanders, using other core scheduling models relying upon other artificial intelligence techniques like Bayesian networks (Janssens et al., 2004, 2005), simple classifiers (Moons et al., 2005), association rules (Keuleers et al., 2001), and many others. Thus, in addition to the specific tree
induction algorithm used in ALBATROSS, users can opt for a wide variety of knowledge extraction techniques and meanwhile benefit from the functionalities that are provided by the other FEATHERS modules (e.g. preprocessing). Easy transferability of the static activity-based model to another study area, which has been investigated Arentze and Timmermans (2002), was accounted for in the FEATHERS design. This resulted in the easy incorporation of the input data of new study areas into the system and in an easy extension of existing datasets with new, context-specific attributes.

Within the FEATHERS framework, the developed activity-based models are micro-simulation models, simulating each member of the population individually. Hence, for each of the car trips generated, one can obtain information regarding the type of activity that is associated with this trip as well as other context information such as e.g. socio-economic data on the traveler and its activity schedule for the day. It is reasonable to assume that on an individual level, the context of a trip plays a role in how an individual assesses the cost/utility of a certain route, giving for instance preference to other routes taken in the context of flexible activities, like for instance leisure. Preliminary research results (Beckx et al., 2006) indeed report on a significant impact of travel purpose on driving behavior, which illustrates the relevance of the trip context when investigating behavior during trips.

The link between activity-based models and traffic assignment is a key factor in increasing the deployment of activity-based models in practice since the resulting visualization and network functionalities meet the needs and concerns of practitioners. Indeed, the traditional network assignment functionality has always existed before in four-step models. Hence, in this first stage, the link between activity-based models and traffic assignment results in a coupling of new activity-based modeling techniques with models and applications that have been operational in practice long time.

3.3.2 Semi-static activity-based modeling

Because of the micro simulation of activity-travel patterns, most activity-based models do not suffer from aggregation biases. Micro simulation provides a practical method with which to implement probabilistic models at the level of the individual. The basic argument is that people travel, not zones, and by averaging to the level of zones, much information is lost and the aggregation bias is significant. Because of micro simulation it is possible to produce for instance origin-destination matrices at an hourly (or even more detailed) level, for
different days in the week (see section 2 for data requirements), or under specific circumstances like extreme weather conditions. However, the behavioral modeling process in itself is not changed.

Indeed, it is known that most currently operational activity-based models are only applicable in a stationary environment. This characteristic is inconsistent with other studies where it has been proven that travel behavior is highly evolutionary (see e.g. Schönfelder, 2006 for a detailed overview) and non-stationary.

To this end, we have undertaken some first studies to extract non-stationary information from longitudinal data. In a first application (see Cools et al., 2007, 2008), traffic counts have been used to observe the impact of day of the week, but also regular events such as holidays etc on the observed traffic states. Also weather information has been accounted for. The different techniques pointed out the significance of the day-of-week effects: weekly cycles seem to determine the variation of daily traffic flows. With respect to weather information, the most appealing result for policy makers, is the heterogeneity of the weather effects between different traffic count locations. Furthermore, the results indicated that precipitation, cloudiness, and wind speed have a clear diminishing effect on traffic intensity, while maximum temperature, sunshine duration and hail, significantly increase traffic intensity.

Obviously, these analyses are only preliminary. Tools like the VEDETT application (see section 3.2.3) further allow for a more detailed behavioral impact study, enabling one to keep the sample for a whole year, hereby measuring and comparing people’s (non-stationary) activity and travel behavior before, during and after the occurrence of an event.

### 3.3.3 Dynamic activity-based modeling

The next step in the trajectory, deals with the development of a dynamic agent-based micro-simulator that allows one to simulate activity-travel scheduling decisions, within day re-scheduling and learning processes in high resolution of space and time. A priori, the dynamic activity-based simulation system is based on the Aurora framework, a full dynamic activity-based model focusing on the rescheduling of activity-travel patterns.

The basis of the Aurora implemented model appear in Timmermans et al. (2001) and Joh et al. (2003, 2004) focusing on the formulation of a comprehensive theory and model of activity rescheduling and re-programming decisions as a
function of time pressure. Apart from duration adjustment processes, Aurora incorporates also other potential dynamics such as change of destination, transport mode, and other facets of activity-travel patterns. Later, this model was extended to deal with uncertainty (Arentze and Timmermans, 2004), various types of learning (Arentze et al., 2005), and responses to information provision (Arentze and Timmermans, 2005b; Sun et al., 2005). Finally, the model has been implemented as a multi-agent simulation system (Arentze and Timmermans, 2005c). The system is dynamic in that (i) perceived utilities of scheduling options depend on the state of the agent, and implementing a schedule changes this state; (ii) each time after having implemented a schedule, an agent updates his knowledge about the transportation and land use system and develops habits for implementing activities (i.e. the agent learns), and (iii) at each time an agent arrives at a node of the network or has completed an activity during execution of a schedule, he may reconsider scheduling decisions for the remaining time of the day (rescheduling). This may happen because an agent’s expectations may differ from reality. This may be the result from imperfect knowledge, but it may also be due to the non-stationarity of the environment. Indeed, as a result of the decisions of all other agents, congestion may cause an increase in travel times or transaction times at activity locations that were initially not accounted for by the agent. Furthermore, random events may cause a discrepancy between schedule and reality.

3.3.4 Full microscopic activity-based model with microscopic route choice

Given the level of detail of the activity-based models discussed in the previous sections, the implementation of the bi-directional interaction between the activity-based model and the transportation system on a non-microscopic level exhibits some drawbacks.

The origin-destination matrices that are constructed based on the predicted activity-travel diaries can be aggregated at different levels of detail. While it is desirable to retain as much information as possible, and hence work at a low level of aggregation, the level of disaggregation of the origin-destination matrices is quite limited in practice, e.g. a matrix segmentation by trip purpose only. While some other general socio-demographic variables can additionally be accounted for in the segmentation, the assignment procedures that are used in the conventional four-step models and in stage 1, remain limited in the maximum level of disaggregation of the matrix that can be dealt with.
The presence of uncertainty and of incomplete information can yield a discrepancy between the attributes of intended and executed activities or trips. This issue is dealt with by dynamic activity-based models by introducing the concept of schedule execution as presented in the previous section. This schedule execution introduces a feedback between the state of the transportation network and the scheduling process. By using non-microscopic traffic assignment algorithms, the agent-based concept is broken and the concept of individual route choice is replaced by a model of a higher level of aggregation. This aggregation restricts the level of detail at which effects of policies on the behavior of (very specific groups of) individuals can be assessed.

The issues discussed above are resolved by incorporating microscopic route choice behavior in the dynamic activity-based model. Individual travelers in this case are endowed with the capability to consider alternatives with respect to their intended route, enabling them to cope with changes in the traffic state in an autonomous manner. Indeed, traffic assignment is inherently dynamic in the sense that the traffic state of the road network changes frequently. Consequently, the optimal route of a traveler can be affected by changes in the traffic state. Such changes typically lead to travelers reassessing their current situation, and considering alternative routes. However, changes in the traffic state not only introduce rerouting behavior, but, due to the schedule execution mechanism, information on the traffic state of the transportation network effectively propagates towards the agent-based scheduling process. In this way, schedules that are consistent with the traffic state on the transportation network can be achieved.

### 3.4 FEATHERS’ modular system design

Facing the challenge to implement several new theoretical advances like the ones that are reflected in the four-stage development process in a time and cost efficient manner, a modular framework to conduct research on agent- and activity-based models has been developed. The modularity of the FEATHERS framework is guaranteed by means of the module-based design and by the usage of the object-oriented paradigm. This design results in an agile environment that allows for easy removal, exchange and insertion of functionalities and even complete modules.

An overview of the current modular structure of the FEATHERS framework is presented in figure 2. In the remainder of this section, the functionality of the
modules and the implications of the 4 stage timeline on the evolving functionality of the modules will be discussed.

Configuration module (ConfMod)

In order to be able to exploit FEATHERS’ modular structure to the maximum extent, a flexible configuration functionality is required. Every module that is active in FEATHERS communicates with the configuration module in order to obtain its specific required settings (see Figure 2). This approach allows for a central configuration management, from where the relevant settings are dispatched to each of the modules. Modules can be switched (in-)active using the configuration module to facilitate the multi-stage development strategy described above. If for a module no settings are available in the configuration
file, it is considered to be inactive by default. This way, users are not burdened by functionality that is provided by the framework but that is not needed for the current experiments (cfr. simultaneous development of functionalities for several stages).

In order to guarantee extensible and structured configuration settings, which are required to accommodate future and currently unknown configuration settings, the configuration module stores all the configuration settings for the FEATHERS modules in XML format (W3C, 2006). This makes the addition of new parameter settings for a (new) module a simple matter of updating the XML configuration file.

Data module (DatMod)

One of the core modules in the system is the data module. The data module provides access to the data that needs to be accessible throughout all other modules. Two major types of data are provided by the data module: supply and demand data (see Figure 2).

The (geographic) supply data not only includes the transportation network but also includes information on geographical zones in the study area such as e.g. the attractiveness of a zone for conducting certain activities. Also information on the availability and performance of the transportation system between the zones in the study area (e.g. travel times, travel costs, bus fares) is included in the geographic supply data. In summary, the supply data consists of the data describing the 'context' in which the agents live and schedule their activity and travel episodes.

The demand data (see the upper part of the data module block in Figure 2) consists of the activity-travel diaries or schedules that describe the demand for the execution of activities at certain locations as well as the resulting demand for transportation. The collected diaries are typically accompanied by person and household data for the persons executing the diaries. The data model for the demand data in the FEATHERS data module is aware of the following entities: persons, households, (optionally) cars, activities, journeys and lags and assumes they relate as presented in Figure 3. In this definition, a lag is typically transport which is needed to access and egress the main transport mode for that trip. As FEATHERS is not only tailored towards the Flemish situation and the data survey discussed in Section 2, the attributes that are available in the data files for each of the entity types are fully customizable through the configuration module.
Both the supply and the demand data managed by the data module are made available to other modules through the data module’s standardized interface.

![Figure 3 Schematic representation of the relations between the transportation demand data entities in the FEATHERS data module.](image)

As it is imperative that the demand data can be easily accessed by (future) modules it is important to efficiently implement the relationships between the entities in the data model. These relationships are defined in the data model that is presented in Figure 3. As the number of persons and households in a survey is typically rather small (e.g. 2500 households for the survey discussed in this chapter), the demand data can be loaded into memory for fast access. The relations between the entities/objects in Figure 3 are implemented as pointers between objects. They allow for efficient browsing between related entities (e.g. finding a household attribute for the household to which a person belongs).

As not all geographic supply data is available at the same level of detail, the data module provides support for different levels of detail (currently 3, expandable if required). This support includes keeping track of the relation between the zones at the different levels of detail. In the current implementation it is assumed that each zone at the lower level (more detail) belongs to one higher level zone (less detail) only. These relations between the levels of geographic detail allow for (dis-)aggregation of simulation results to the desired geographical level of detail.

The attributes that are stored for the zones in a supply data layer are configured through the configuration module for flexibility. For the Flanders study area (total area of approximately 13 500 km²) the levels of detail used are: statistical
sector (small administrative unit, comparable to districts or quarters, 10255 zones), sub-municipalities (1145 zones), and municipalities (327 zones). As the number of zones in each of the geographical data layers is rather limited for our study area, it is perfectly feasible to load all data in memory for fast access. Although it was not required for the current research, a configuration setting allows the data module to switch over from loading all data into memory to using direct access binary data files if not sufficiently memory is available. This switch is transparent to the modules consulting the data.

As information on the transportation system (e.g. bus fares between zones) cannot be attributed to one zone only, the data module also provides attributes for pairs of zones for each of the levels of geographical detail. The attributes that are stored for each pair of zones are configured through the configuration module. However, as the required storage capacity increases with the square of the number of zones, the data module provides the choice between loading all data in memory and using direct access files. For the Flemish case study, the data on pairs of municipalities and on sub-municipalities was loaded into memory while for the statistical sectors a direct access file was used.

The supply data on the attractiveness of zones for the execution of activities that is used for the model in Flanders is exceptionally rich due to the availability of the socio-economic survey, where the full Flemish population (6 million) was obligatory surveyed on several socio-demographic variables (age, gender, etc.). In addition to socio-demographic variables, the dataset also contains commuting behavior of all persons in the study area (population level). Given this characteristic, one can derive from this data e.g. the level of employment by employment sector for each statistical sector, which can be used to calculate the availability and attractiveness of locations for different activities. Information about the transport system (road network data, congested travel times, etc.) is available from the existing four-step model that is currently used in Flanders. Also the traffic network that is used (see figure 2) results from the existing four-step model managed by the Flemish government. Although the data module manages geographical data, it needs to be noted that it currently does not provide geographic information system (GIS) functionalities. Hence, geographical manipulations such as e.g. overlays and map matching of GPS data need to be performed in a preprocessing step and the resulting data need to be imported into the FEATHERS data module afterwards.
**Population module (PopMod)**

The units of investigation in an activity-based model are the persons making scheduling decisions that result in activity-travel diaries. Hence, the agents in an agent-based activity-based model are the individual persons. During scheduling, the agent’s person characteristics or attributes are used as inputs for the scheduler to drive the simulated decisions of the agent. The definition of which attributes are used in the agents is realized through the configuration module. Examples of person attributes that are commonly used are marital status, age, possession of driver license, etc.

Similar to the person entities in the data module, the persons (agents) in the population module relate to households, car (optional), activity, journey and lag entities (Figure 3). In the population module, these entities are virtual entities as opposed to the real entities in the data module. Through the relations between the entities, the attributes of all entities are accessible to be used in the agent’s scheduling process in addition to its person attributes.

An important difference between the person entities in the data module and the agents in the population module is the fact that the agent entities possess important additional functionalities: scheduling, schedule execution and learning (Figure 2), which are implemented in the scheduling module, the schedule (activity and travel) execution module and the learning module respectively. These functionalities are implemented in separate modules in order to make replacement and extension of agent functionalities as convenient as possible.

In order to perform a simulation of activity and travel behavior of individuals in a population, a synthetic population consisting of persons and households (and optionally cars belonging to the household) needs to be built. The population module is responsible for the management of the different agents (persons) that are used in the synthetic population. The synthetic population therefore consists of a collection of agents where each agent is characterized by a number of attributes. As mentioned previously, the data required are available at population level in Flanders by means of the socio-economic survey. These population data can then be updated to the current prediction year by the use of Iterative Proportion Fitting (IPF) technique. The IPF is a well established technique with the theoretical and practical considerations behind the method thoroughly explored and reported in literature (origins appear in Beckman et al. 1996). It uses the population or the larger sample margins to update the information at cell frequency level. Several applications of the technique in
travel demand modeling have been reported (Arentze et al., 2007, Guo et al., 2007, Wong, 1992).

A common functionality of all agents throughout the four development stages is the scheduling functionality. Based on its personal, household related, environmental and schedule related attributes, the agent is able to predict an activity-travel schedule using functionalities provided by the scheduling module. The resulting activity and travel episodes for an agent are stored in the activity, journey and lag entities linked to that agent (Figure 3). During the simulation, the person, household and optionally car entities of the agents (corresponding to the upper part of Figure 3) are used in order to predict the schedules for the agents, which constitute an important model output and which correspond to the lower part of Figure 3.

Schedule module

The schedule module is a generic module in which different scheduling algorithms can be implemented. The configuration module determines which of the scheduling algorithms that are available is activated. The schedule module is tightly interfaced with the (agents in) the population module as it implements the scheduling algorithm that uses input data from the population module and stores the results in the schedules in the population module.

In the scope of stages 1 and 2 of the FEATHERS development trajectory, a decision tree-based scheduling algorithm was implemented in the schedule module. This implementation currently consists of a sequence of 26 decision trees, where each decision tree is used to model decisions on specific activity-travel schedule properties (e.g. going to work or not, transport mode for a journey, start time and duration of an activity, etc.). Besides the decision trees, the scheduling mechanism contains an algorithm to make the schedules consistent. In order to be consistent, a schedule needs to comply with a number of constraints: situational constraints (one can’t be in two places at the same time), institutional constraints (opening hours constrain certain activity behavior), household constraints (bringing children to school), spatial constraints (particular activities cannot be performed at particular locations), time constraints (activities require some minimum duration) and spatial-temporal constraints (travel time depends on transport mode). The output of the scheduler in the scheduling module is the collection of activity-travel diaries for all the agents in the population module.
A second, more advanced scheduler that is being investigated is the diary utility maximizing approach that was discussed in Section 3.3. Although this scheduling approach is fundamentally different from the scheduler in stages 1 and 2, both schedulers are implemented in the scheduling module side by side. This illustrates the flexibility of the design of the schedule module in combination with the population module. This flexibility enables further research on alternative innovative scheduling mechanisms (see for instance Vanhulsel et al., 2007).

Schedule execution module (ExecMod)

A dynamic activity-based model as described in stages 3 and 4 requires a schedule execution mechanism. This schedule execution mechanism simulates the simultaneous and synchronous execution of all activities and journeys for all agents. As can be observed from Figure 2, separate modules are provided for simulation of the execution of activities and for travel execution.

In the activity execution module, uncertainty on the scheduled activities can be modeled. Indeed, during the execution of activities unforeseen events can take place resulting in changes of activity attributes, e.g. the duration of the activity, compared to the attributes of the activity as it was originally scheduled.

In the travel execution module the relation between traffic demand and the performance of the transportation system (e.g. car travel speeds on a link as a function of traffic intensity) is accounted for. As the agent’s schedule executions are simulated for all agents simultaneously, the total traffic demand can be computed for each transportation mode and at each moment in time. In order to obtain the traffic intensities on links in the transportation network, the traffic demand needs to be loaded onto the network. In stage 4, this is achieved by simulating the microscopic route choice behavior.

The potential mismatch between the attributes of scheduled and simulated executed activities or travel results in a potential inconsistency in the schedules if no corrective rescheduling action is taken. E.g. if an journey takes longer than scheduled due to congestion, the next activity cannot start at the scheduled time and needs to be rescheduled.

The rescheduling functionality, combined with the traffic assignment from the stage 4 model, results in a bidirectional coupling between the scheduling and the transportation network: the traffic demands predicted by the activity-based model impact the traffic states in the transportation network and vice versa.
Rescheduling of activities and travel is managed in the FEATHERS framework by the supervisor (see figure 2), which coordinates between the scheduling and the schedule execution for each agent. This coordination mainly consists of deciding when to check the partially executed schedule for inconsistencies and when to start the rescheduling (SchedMod) and the schedule execution (ExecMod).

**Learning module (LearnMod)**

The learning behavior of persons stems from the fact that they observe that their assumed knowledge about the environment in which they operate (e.g. the transportation network) does not match reality. An indication of this mismatch is given by a mismatch between scheduled and executed activities or travel. The learning process of the agents is managed by the supervisor in combination with the (re-)scheduling and the schedule execution for that agent. The supervisor takes into account that the rescheduling processes typically run on a faster time scale than the learning processes. By adaptation of the supervisor and the scheduling, schedule execution and learning modules, a wide range of experiments can be conducted.

**Statistics (StatMod) and visualization (VisMod) modules**

The statistics module provides reports regarding the (synthetic) population and the activity-travel schedules to the FEATHERS user. This includes information that can be extracted at the level of households (e.g. distribution of households according to availability of means of transportation); persons (e.g. usage of transportation modes), journeys (e.g. average number of journeys per day); lags (e.g. average number of lags per journey) and activities. Given the similarity in the person, household, car, activity, journey and lag entities and their relations in both the data module and the population module, the statistical module and the visualization module make abstraction from the fact whether they consult the data module or the population module to extract the data to report to the user. Hence, statistics that are implemented for the survey data in the data module can readily be used to draw the corresponding statistics on simulated data from the population module. Which statistics are to be drawn by the statistical module is configured through the configuration module.

As the activity-travel diaries contain detailed travel information, the statistical module provides the functionality of skimming through all schedules and compiling an OD matrix. Given the level of detail of the data, the travel
information can be aggregated in segmented OD matrices such as e.g. time sliced OD matrices, OD matrices per transportation mode, and OD matrices per activity type. This functionality enables a transition step in the evolution from four step models towards activity-based models by exporting OD matrices that are assigned to the transportation network using the traffic assignment tools from the traditional four step model as was discussed in stage 1.

The visualization module relates strongly to the statistical module in the sense that the visualization module will create graphical reports contrary to the numerical reports provided by the statistical module. Currently the visualization module is not operational yet and all FEATHERS reports are obtained through the statistical module. However, in order to improve user friendliness, a graphical user interface and a visualization module will be added to the FEATHERS framework in the future.

Training module (TrainMod)
All models used throughout the FEATHERS framework need to be calibrated using real-life data. This functionality is provided by the training module. The training module is configured through the configuration module and obtains the required data from the data module. The output of the training module is calibrated model parameters for the models that are used in the other modules (see Figure 2).

3.5 Travel demand management strategies within FEATHERS
It is well-known from literature that one of the major promises and reasons for existence of the activity-based modeling approach is an increased sensitivity for scenarios that are generally important in transport planning and policy making. In contrast to trip-based and tour-based models, activity-based models are sensitive to institutional changes in society in addition to land-use and transportation-system related factors. Such changes may be related, for example, to work times and work durations of individuals and opening hours of stores or other facilities for out-of-home activities. Furthermore, the models should not ideally only be sensitive to primary but also to secondary responses to land-use and transportation-related changes that in the past have been responsible for unforeseen and unintended effects of transport demand measures by policy makers. Examples of a primary response are changing
transport modes, reducing frequency of trips or changing departure time. The primary response can thus be defined as the choice of a strategy which is aimed at reducing a negative impact or increasing a positive impact of the policy. A secondary response then involves adaptations which are required to make the broader activity pattern consistent with the change. Typical examples of such possible effects are an increase of out-of-home social activities in response to measures stimulating teleworking or an increased use of cars for shorter trips as a secondary effect of stimulating car-pooling for trips to work (car stays at home and can then be used by other members of the household). Also, by means of example, switching from car to public transport for trips to work may limit the possibilities for trip chaining and hence induce extra separate trips as a secondary response.

Potentially, activity-based models should be sensitive to several groups of TDM, including: population, schedule, opening-hours, land-use measures as well as travel costs and travel times scenarios. As Arentze and Timmermans (2005d) described, in terms of population scenarios, several large trends can be potentially evaluated, for instance the increasing participation of women in the labor force, the increasing number of single-adult households resulting in a decreasing average number of persons per household, the increasing household income as a consequence of general economic growth, the aging of the population in terms of graying and de-greening, the increasing number of cars per household etc. Also institutional changes in society, for instance by means of the implementation of a workweek or work start time changes can be modeled in an activity-based framework. A similar application is the widening and shortening of opening hours of for instance service related facilities. Not only time-specific measures can be evaluated, but also spatial scenarios can be computed. For instance, there might be a need to evaluate the result of an increasing spatial separation of locations for residence, work and facilities as a consequence of sub-urbanization or alternatively, a concentration of facilities in commercially attractive neighborhoods. Finally, typical travel-time or pricing scenarios can be computed by means of the new operational activity-based models.

However, in addition to the more traditional policy measures mentioned above, the applicability of TDM can be increased to environmental and health effects, using the activity-based paradigm as a starting point. Indeed, general traffic policy measures influence road safety, emissions and human health in an indirect way, i.e. indirectly through exposure. First results, using an activity-
based model for analyzing emission and health impacts, have been reported in Beckx et al. (2007).

### 3.6 Conclusions

The main goal of the FEATHERS framework which has been presented in this chapter is to allow for easy updating and/or replacement of functionalities used in activity-based models as the state-of-the-art in the activity-based research field progresses rapidly. We therefore believe that the modular framework holds considerable promise to facilitate the research on and the development of dynamic activity-based models for transport demand.

It was illustrated that the modular design of the FEATHERS framework is compatible with a long term four stage development trajectory of activity-based models that was postulated for Flanders (Belgium): stage 1 is the development of a static activity-based model; stage 2 is the development of a semi-static model accounting for evolutionary and non-stationary behavior; stage 3 is the development of a fully dynamic activity-based model including short-term adaptation (rescheduling) and learning; and stage 4 is a full agent-based dynamic activity-based micro simulation framework including traffic assignment. Besides the discussion of the different modules within the FEATHERS framework and their interactions, it was shown how the FEATHERS modules’ functionalities accommodate the requirements of each of the four development stages.

Along with this, it has been shown that the data requirements of both static and the dynamic model applications, are a prerequisite for implementation and operationalisation. To this end, an extensive hybrid, multi-method data collection approach has been described in detail. It was shown that especially the dynamic activity-travel model application needs considerable additional effort in terms of data collection. It has been shown that in addition to traditional activity-travel diaries, such a model needs data on activity rescheduling decisions of individuals, data on household multi-day activity scheduling, data on life trajectory events and how they impact activity-travel decisions, data on how individuals learn and data on how short-term dynamics are linked to long-term decisions.
References


hand-held scheduling process survey. Proceedings of the 10th International Conference on Travel Behavior Research, Lucerne, Switzerland, August 10-15.


Chapter 4 Validation of an activity-based traffic demand model for Flanders

The previous chapter introduced the FEATHERS framework which can be used for implementing activity-based transportation models. In order to justify itself and in line with the goals of this research, in this chapter, one such activity-based model is worked out. Subsequently, in a second step, this model is also validated as model validation forms an essential part of any model development process if the model is to be accepted and used to support decision making.

This chapter is adapted from: Computational Intelligence for Traffic and Mobility. Edited by Wuhong Wang, Geert Wets, Atlantis Press, Springer, 2012

In this chapter the different steps in the operationalization of an activity-based model for Flanders (Belgium) inside the 'Forecasting Evolutionary Activity-Travel of Households and their Environmental RepercussionS' (FEATHERS) framework are worked out. In order to run the activity-based model for the Flemish situation, several data layers inside the FEATHERS database system have to be prepared. To this end, activity-based schedule information, a synthetic population data set and environment information about the study area in terms of zoning system, land use and transportation system have to be processed. In a second part, the chapter discusses the validation of the modeling results. Based on the validation results, it is demonstrated that the presented activity-based model is able to realistically mimic the spatial and temporal dimension of transportation demand in Flanders, as well as the evolution of the state of the road network in both space and time.

4.1 Introduction

Travel demand models are an important tool used in the transportation planning process to analyze alternative transportation policies and decisions. Transportation forecasts have traditionally followed the sequential 4-step model where 4 sequential steps from trip generation to traffic assignment yield traffic volumes on network links. Activity-based models on the other hand form another class of transportation demand models that predict on an individual level where and when specific activities (e.g. work, leisure, shopping, etc.) are
conducted. Along with these activities also trips are generated so that the end result of an activity-based model consists of activity-travel diaries or schedules. Activity-based models can be developed as stand alone applications, however they can also be embedded in a framework that allows the models to be created, updated and maintained more easily. One such framework is the FEATHERS framework (Bellemans et al., 2010). The idea was conceived to develop a modular activity-based model of transport demand framework, where the emphasis is on the one hand on the practical use of the system by practitioners and end users and on the other hand on facilitating the creation of alternative activity-travel demand models. Similar initiatives, like for instance the Multi-Agent Transport SIMulation toolkit (MATSIM, 2011) and the Common Modeling Framework (CMF) (Davidson et al., 2007) have been developed for trip-based and complex tour-based models, highlighting the potential relevance of such a modular system.

The activity-based scheduling model that is implemented in the FEATHERS framework and that is presented in this chapter is based on the scheduling model that is present in A Learning BAseD TRansportation Oriented Simulation System (ALBATROSS) (Arentze and Timmermans, 2005a). The first part of this chapter therefore focuses on the different steps concerning the operationalization of the ALBATROSS scheduling core inside FEATHERS. As will be discussed, the scheduling is based on decision trees, where a sequence of 26 decision trees is used in the scheduling process. Furthermore, the gathering of Flemish data, necessary for training the ALBATROSS model, will be explained into detail.

As FEATHERS now is equipped with an activity-based model, the question of validity of the model still remains. Therefore, in a second part, this chapter focuses on validation aspects. Obviously, it cannot be neglected that model validation is an important issue before model employment. By definition, model validation is a means to systematically establish a level of confidence of models. In this part, the comparison of the applied model with field observed data will serve as an indicator of how well the model replicates existing travel patterns.

4.2 **FEATHERS**

In order to facilitate the development and maintenance of dynamic activity-based models for transport demand, the FEATHERS framework was developed. For this purpose FEATHERS provides the tools needed in order to develop and maintain activity-based models in a particular study area. The framework
supplies tailored memory structures such as, 'households', 'persons', 'activities', 'trips', 'cars', etc. and at the same time FEATHERS is also equipped with a database structure that is able to nourish activity-based models being developed, assimilated or modified inside FEATHERS. In such a way, in the framework, users can opt for a wide variety of functionalities that are provided by the FEATHERS modules facilitating the creation and maintenance of activity-travel demand models.

4.3 The ALBATROSS system

Currently the FEATHERS framework incorporates the core of the ALBATROSS Activity-Based scheduler (Arentze and Timmermans, 2005b). This scheduler assumes a sequential decision process consisting of 26 decision trees that intends to simulate the way individuals build schedules. The output of the model consisting of predicted activity schedules, describes for a given day which activities are conducted, at what time (start time), for how long (duration), where (location), and, if travelling is involved, the transport mode used and chaining of trips.

The underlying methodology and assumptions used in each major step within the ALBATROSS model are as follows. The scheduler first starts with an empty schedule or diary where after it will evaluate whether or not work activities will be included. If this is the case, then the number of work activities will be estimated together with their beginning times and durations. In a second step the locations of the work activities are determined. The system sequentially assigns locations to the work activities in order of schedule position. This is done by systematically consulting a fixed list of specific decision trees. During the third step the model proceeds with the next decision steps, that is: selection of work related transport modes, inclusion and time profiling of non-work fixed and flexible activities, determination of fixed and flexible activity locations and finally determination of fixed and flexible activity transport modes.

As these activity-based schedules constitute the output of an activity-based model, they can be used to infer Origin-Destination (OD) matrices for traffic assignment. Indeed, as the output of the model contains detailed information about trip location, transport mode, trip start time, etc., hourly OD matrices containing trips between the different TAZs can be derived very easily.
4.4 Incorporating the ALBATROSS model inside FEATHERS

The encapsulation of the ALBATROSS model inside FEATHERS asks for a number of steps. First of all, the model itself has to be modified in order to use it for the Flemish region and second, input data needed for running the model have to be gathered for the same region. The following sections discuss these steps into more details.

4.4.1 Tailoring the ALBATROSS model to the Flemish situation

As the original ALBATROSS model was designed for the Netherlands specifically, several changes had to be made in order to employ the model to Flanders.

Firstly, as each decision step in the process model is controlled by a decision tree, the complete list of 26 decision trees inside the model had to be replaced by Flemish decision trees that were derived from corresponding observations in the activity diary data set using a CHAID based induction method (Arentze and Timmermans, 2005b, Kass, 1980). The activity diary data that were used will be further discussed later in this chapter.

Secondly, as the model inside FEATHERS makes use of decision trees where a lot of continuous condition variables are discretized into nominal attributes before training the trees, a long list of discretizing bins had to be defined. The discretization was performed by equal-frequency binning, i.e. the thresholds of all bins were selected in a way that all bins contained the same number of numerical values. By making use of a discretization operator it also becomes very convenient to train all decision trees for any kind of study area as long as an activity diary data set is available.

Thirdly, transport system related variables deserved special attention. One of the most important changes in this regard is the re-implementation in the model of the calculation of travel costs by particular modes. A number of assumptions underlying the Dutch equations were not valid for Flanders’ study area.

Therefore, besides car travel costs, costs of public transport trips that were originally calculated specifically for the Dutch transport system had to be replaced by implementations representing the Flemish situation. For example, train and metro ticketing systems in the Flanders vary from those in the Netherlands, so new implementations had to be foreseen for the Flemish region.
4.4.2 Preparing input data for the ALBATROSS model

In order to run the ALBATROSS activity-based scheduler for the Flemish situation, several data layers inside the FEATHERS database system should be prepared. Activity-based schedule information, a synthetic population data set and environment information about the study area in terms of zoning system, land use and transportation system has to be processed. In this part of the chapter the different steps involved in the data processing together with additional background information about the different types of data sets are provided.

Schedule data

Activity-based models differ highly from traditional transport forecasting models in the sense that the former models aim at predicting the interdependencies and interrelationships between the multitude of facets of activity profiles on an individual level. The major distinction with conventional models is that scheduling of activities comprises the foundation of activity-based models. Therefore, and in line with the basic underpinnings of the activity-based paradigm, the data required to estimate an activity-based model differs from the data required to build conventional models. More specifically, in order to build an activity-based model of transport demand, data on activity patterns are required. While there is a wide variety of possible types of travel surveys that can be employed for the purpose of estimating conventional transport models, the primary objective of the data collection effort for activity-based models should be reflective of the data necessary to estimate this kind of model. Current household travel surveys rely extensively on the use of mail, telephone, internet and multimedia methods to obtain information on the daily travel and other activities of a representative sample of the population. Given the needs of the activity-based modeling approach, the travel survey to be called in has to pay attention on the measurement of activities at the end of trips and to how and when the respondent chose to do them. One such travel survey for the Flemish study area that can be used for estimating the activity-based model inside FEATHERS is the Onderzoek VerplaatsingsGedrag Vlaanderen (OVG) travel survey. This OVG survey formally is a trip-based survey method, however information about trip purposes and hence information about activities in between trips is available. Therefore, this survey is particularly suitable for estimating the activity-based model embedded in the FEATHERS framework. The OVG travel survey was conducted through 8.800 persons that were selected
based on a random sample from the national register. These persons were all involved in a survey that was conducted primarily through face-to-face interviews. During these surveys information about the demographic, socioeconomic, household and trip-making characteristics of these individuals were gathered and for the purpose of this research, all person records and their according travel were then processed and being used as input for estimating the activity-based model incorporated inside FEATHERS.

**Synthetic population data**

Activity-based models require detailed information on household and person demographics and characteristics. Because of the fact that in Flanders, the gathering of individual data, or the retrieval of individual data from administrative registers is not allowed for privacy reasons, some missing attributes describing the population still had to be estimated. Therefore, a synthetic population data set had to be generated that represents households and household members. A synthetic population is meant to be a statistically duplicate of an actual population. For each household, characteristics such as number of household members, yearly income, number of cars, etc. are generated. Subsequently, each person is characterized by means of attributes such as age, gender, work status and driving license. In this study, the aim was to create a synthetic population for Flanders, for the year 2007. An application of Beckman et al. (1996) and Guo and Bhat's (2007) approaches for generating synthetic populations was chosen. The data available here included data on the level of individuals from the socioeconomic census of 2001 conducted in Belgium and marginal data available for the variables of interest that were desired to be controlled for, for the Flemish population in the year 2007. At the household level, the variables controlled for included: availability of cars in a household, age of the householder and household size. At the individual level, gender and age were controlled for. To estimate the target joint distributions for Flanders in 2007, the socioeconomic census joint distributions were updated using the Iterative Proportional Fitting (IPF) algorithm based on the population marginal of 2007 for Flanders. This was conducted both at the household and the person level based on the control variables mentioned above. As described in (Pedersen and Sandahl, 1982), the results obtained from comparing the generated synthetic populations with the real data provided support that both the household and the person level distributions of the control and some non-control.
variables represent the true population well and consequently the actual population could be relatively accurately synthesized.

Environment data

Zoning system: The unit of geography inside the FEATHERS framework is defined by means of a hierarchy of three geographical layers on top of each other. This hierarchy stems from the land use data being available at different levels of geographical detail. In order of increasing detail there are a total of 327 Superzones, 1145 Zones and 2386 Subzones that were developed for the 2007-based FEATHERS framework. The list of Superzones corresponds with all municipalities inside Flanders, the Zones correspond with administrative units at one level lower than municipalities and the last level, the Subzone level, consists of virtual areas that were constructed based on homogeneous characteristics defining each Subzone.

Land use data: Data about land use are available at different levels of the zoning system and involve opening hours and locations of facilities for out-of-home activities. Moreover, the land use system also provides sector-specific data that are used as indicators of availability and attractiveness of facilities for conducting particular activities. In the FEATHERS database the following sector-specific data are being used: total employment, number of primary school children, employment in daily good retailing, employment in non-daily good retailing, employment in banks/post offices and employment in restaurants. By means of assumed relationships between these sector data sets and activity types such as ‘shopping’, ‘bring/get’, etc., possible locations for conducting such kind of activities can be obtained.

Transportation system: The transportation system is represented by a set of Level Of Service (LOS) matrices by transport mode containing information about travel distance, travel time, egress and access time. The different transport modes that are considered include, car (driver), car (passenger), public transport and slow mode. Each transport mode has its own pair of distance and travel time matrices. These travel distances and travel times were derived in a pre-processing stage outside the system using a GIS tool. Furthermore, in a transport demand model it is also important to have time-of-day dependent travel times rather then an average. For this reason, free-flow, morning-peak and evening-peak travel time data were derived accordingly.
4.5 Travel demand and traffic assignment model chain

The 4 steps of a classical transportation planning system model are: trip generation, trip distribution, mode choice and traffic assignment. In line with this traditional 4-step travel demand model where the first 3 steps result in OD trip matrices and the 4th step comprehends traffic assignment, the travel demand and traffic assignment model chain presented in this chapter, also consists of an OD trip matrices generation part, done by FEATHERS, and a traffic assignment part as a separate modeling step next to FEATHERS’ involvement in the chain. In this part, the several steps in the model chain are explained into more detail.

4.5.1 FEATHERS-based transportation demand

The output of FEATHERS consists of activity-travel diary data sets for a day in the 2007 base year, however output differs across 7 days of an average week. In addition to this day-dependency of schedules and at a more detailed level, trip start times inside these schedules are available in minutes thus allowing trips to be categorized easily according to hourly start times. This categorization is a usual step done while deriving OD matrices necessary for the traffic assignment step. Next to this time aspect of schedules, trips can also be characterized by one of several modes of transport, among which two types of car mode, a public transport mode and slow mode. Therefore, trips done by all kinds of transport mode can be taken into account. When combining the time and transport mode dimension in generating OD matrices, for each hour of the day and for each day of the week, these diary data sets can be processed yielding 168 OD trip matrices when focused on car mode only. This large amount of OD matrices will then serve as input for the traffic assignment part.

4.5.2 Traffic assignment

Traffic assignment is the last step in the traditional 4-step approach and assigns the OD matrix trips to the network links by minimizing travel costs providing the final output of the modeling process. The user equilibrium traffic assignment method available in a standard transportation GIS software was used for this last step following the travel demand model step. The main assumption of this equilibrium traffic assignment method is that travelers are rational and will act in a way that minimizes their transportation cost (i.e. travel time). This method is an iterative process which converges when no traveler can improve his travel
time by changing the current path. A capacity constrained function, which approximates the equilibrium of congested travel paths in the network, was used to model the impacts of congestion on travel times. The Bureau of Public Roads (BPR) function was used to account for the reduction in travel speeds caused by congestion.

As Flanders as a study area is not generating traffic in isolation with its neighboring countries, it is desirable to obtain all traffic on the Flemish network links. Next to internal-to-internal, also external-to-internal, internal-to-external and external-to-external trips have to be considered during the traffic assignment. Therefore, to not only account for internal study area trips but also external trips, an additional 517 external zones were included at the Subzone geographical level of the zoning system and an independent matrix providing external trip information was used in this traffic assignment step so that also these external trips could contribute to the traffic on the network. The OD matrices derived in FEATHERS, representing Flemish OD matrices, were systematically extended with external trip OD matrices so that on Flemish network links also non-internal trips could be taken under consideration.

Another important issue concerns freight transport on the network. As FEATHERS currently is conceived as a person transport demand framework only, no freight trips are predicted. However, freight trips share the same network links as person cars and because link capacities are restrained, during this traffic assignment step, freight trips stemming outside the FEATHERS framework were preloaded on the network resulting in a more crowded network. Preloads form settled background volumes on network links and are incorporated into the assignment process so that person trips, while being assigned on the network, experience these freight transport preloads on specific links as a form of reduction of the respective network link capacities. The overall idea of using preloaded freight traffic in this part therefore is to eventually increase the accuracy of the computed link loadings and congested travel times.

The output from the equilibrium traffic assignment, accounting for external trips and freight transport trips, consists of the person traffic volume on each link in the network over time. This output proves to be important as real-life traffic intensity measurements are available at different locations and for different times of day, which can be used in the validation process as will be discussed later on in this chapter.
4.6 Validation of Flemish simulation results

In case of transport demand models, model validation tests the ability of the model to predict travel behavior. Validation requires comparing the model predictions with information other than that used in estimating the model. If the model output and the independent data are in acceptable agreement, the model can be considered validated (Pedersen and Sandahl, 1982).

In this chapter validation is performed on 4 different levels, namely on the level of internal model components consisting of the decision trees, by exploring the time and space dimensions of the activity-travel output of FEATHERS and as a last part, by comparing predicted traffic assignment link volumes with traffic counts and by collocating predicted vehicle kilometers travelled with official reports by the government at the level of the transport model chain.

4.6.1 Validation on the level of model components

The activity-based model inside FEATHERS uses a CHAID-based decision tree induction method to derive decision trees from activity diary data. This part of the validation therefore describes the quality of the resulting trained decision trees, for each step in the decision process model. Most decision trees involve a choice between discrete alternatives, e.g. transport mode, however, activity duration and activity start time decisions are modeled as a continuous choice and therefore a continuous decision tree is constructed for each of these kind of choices.

To be able to test the validity of the presented model on a holdout sample, only a subset of the cases is used to build the model (i.e. training set). The purpose of the validation test is also to evaluate the predictive ability of the decision trees for a new set of cases. For each decision step, a random sample of 70% of the cases was used to build the decision trees, the other subset of 30% of the cases was presented as ‘unseen’ data to the models; this part of the data was used as the validation set. The percentages that show the predictive performance of the decision trees on the training and validation sets are presented in Table 1. The predictive performance of each discrete choice decision tree was calculated by means of the Confusion Matrix Accuracy (CMA) measure (Kohavi and Provost, 1998). To be able to make a judgment about the predictive ability of decision trees, a null-model for each tree is calculated as well so that the relative performance of each tree can be determined. A null-model is defined as a model that randomly selects a choice alternative. Note
that the performance of a null-model can simply be derived by dividing 100 by
the number of choice alternatives. By comparing the null-models with the
respective decision trees it becomes possible to see whether or not the decision
trees are vigorous enough to score better than the null-models.

<table>
<thead>
<tr>
<th>Choice</th>
<th>Tree type</th>
<th>Nr of choices</th>
<th>Null model (%)</th>
<th>CMA Training set (%)</th>
<th>CMA Test set (%)</th>
<th>RAME Training set (%)</th>
<th>RAME Test set (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusion of work episode</td>
<td>D</td>
<td>2</td>
<td>50.0</td>
<td>77.9</td>
<td>77.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total duration of work episodes</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>27.9</td>
<td>26.4</td>
</tr>
<tr>
<td>Number of work episodes</td>
<td>D</td>
<td>2</td>
<td>50.0</td>
<td>68.8</td>
<td>68.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Duration of separate work episodes</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>27.5</td>
<td>31.4</td>
</tr>
<tr>
<td>Duration of break time</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>71.0</td>
<td>71.5</td>
</tr>
<tr>
<td>Timing of work episodes</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>11.8</td>
<td>12.9</td>
</tr>
<tr>
<td>Location, same as previous</td>
<td>D</td>
<td>2</td>
<td>50.0</td>
<td>79.6</td>
<td>67.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Location, in/out home Superzone</td>
<td>D</td>
<td>2</td>
<td>50.0</td>
<td>63.1</td>
<td>61.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Location, Superzone order</td>
<td>D</td>
<td>5</td>
<td>20.0</td>
<td>30.0</td>
<td>27.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Location, Superzone nearest order</td>
<td>D</td>
<td>2</td>
<td>50.0</td>
<td>75.7</td>
<td>72.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Location, Superzone distance band</td>
<td>D</td>
<td>6</td>
<td>16.6</td>
<td>25.9</td>
<td>24.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Location, Subzone order</td>
<td>D</td>
<td>4</td>
<td>25.0</td>
<td>35.1</td>
<td>32.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Location, Subzone distance band</td>
<td>D</td>
<td>5</td>
<td>20.0</td>
<td>37.3</td>
<td>36.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Transport mode work episodes</td>
<td>D</td>
<td>4</td>
<td>25.0</td>
<td>65.3</td>
<td>62.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Inclusion of fixed episode</td>
<td>D</td>
<td>2</td>
<td>50.0</td>
<td>87.2</td>
<td>86.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Number of fixed episodes</td>
<td>D</td>
<td>4</td>
<td>25.0</td>
<td>48.2</td>
<td>45.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Duration of fixed episodes</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>140.1</td>
<td>154.0</td>
</tr>
<tr>
<td>Chaining with work episode</td>
<td>D</td>
<td>5</td>
<td>20.0</td>
<td>48.8</td>
<td>48.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Timing of fixed episodes</td>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>33.3</td>
<td>34.6</td>
</tr>
<tr>
<td>Inclusion of flexible episode</td>
<td>D</td>
<td>2</td>
<td>50.0</td>
<td>79.6</td>
<td>78.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Duration of flexible episode</td>
<td>D</td>
<td>3</td>
<td>33.3</td>
<td>41.8</td>
<td>39.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Timing of flexible episode</td>
<td>D</td>
<td>6</td>
<td>16.6</td>
<td>49.5</td>
<td>47.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chaining of flexible episode</td>
<td>D</td>
<td>4</td>
<td>25.0</td>
<td>90.6</td>
<td>89.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Location, same as previous</td>
<td>D</td>
<td>3</td>
<td>33.3</td>
<td>60.0</td>
<td>59.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Location, distance-size class</td>
<td>D</td>
<td>25</td>
<td>4.0</td>
<td>8.9</td>
<td>7.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Transport mode non-work episodes</td>
<td>D</td>
<td>4</td>
<td>25.0</td>
<td>52.7</td>
<td>49.8</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1 Predictive performance of discrete (D) and continuous (C) decision trees².

² A dash (-) in the table indicates that the respective missing figure has no meaning
As can be seen in Table 1 all trees perform better than the null-models where a random choice alternative is being selected. This is the case for all trees, even for the location-decision-size tree where at first sight this tree performs worse when compared with other trees. However, this tree being inferior to the other trees, scores low because of the fact that this tree has the highest number of choice options, namely 25, where every option describes a location category. Selecting the correct category out of 25 possibilities inherently makes this prediction difficult. This is indicated by the very low mathematical chance of a correct prediction, 4% in this case. Therefore from this point of view a CMA of 8.9% indicates that this particular tree performs relatively well.

Based on Table 1, it can also be concluded that the degree of over-fitting, i.e. the difference between the training and the validation set, is low for all decision trees. Therefore, it can be underlined that the transferability of the model to a new set of cases is satisfactory.

For continuous decision trees however, another measure than the Confusion Matrix Accuracy is used, namely the Relative Absolute Mean Error (RAME), as no confusion matrix can be determined for these kind of trees. The Relative Absolute Mean Error is calculated by taking the sum over all absolute differences between observed and predicted cases and then dividing this value by the sum over the observed values of all cases. Table 1 lists the Relative Absolute Mean Error for the continuous decision trees for the validation and test set. As can be seen, the RAME for each decision tree separately is approximately the same for the training and validation set, implying that the decision trees perform well in case of unseen data cases. However, values differ much across all trees. This is caused by the fact that the nature of the different choices to be determined is very diverse. For example, the duration of work episodes tend to be rather stable as opposed to the duration of fixed episodes (e.g. bring/get activity). Nevertheless, overall, the continuous decision trees perform quite well.

4.6.2 Validation of the FEATHERS activity-travel time dimension

Transportation allows people to participate in different kind of activities at different locations. These activities, such as work, leisure, shopping, etc. occur at different times of the day and therefore, it is not surprising that the number of trips varies by time of day.

For the time dimension aspect of the validation, a comparison with official OVG reports is made. Despite the fact that raw OVG survey data has been used in order to train the ALBATROSS model inside FEATHERS, the official OVG reports
released by the government are used for this validation as there is no other current time-related and independent data set available for Flanders that is known to the authors. However, it needs to be stressed that although the OVG statistics and the model training data originate from the same survey of a representative sample of the Flemish population, the OVG report draws statistics on a sample of the Flemish population while the FEATHERS output results from a microscopic simulation of the behavior of the full Flemish synthetic population.

Figure 1 presents the distribution of trip starts by time-of-day for an average work week day. As can be observed, the trip trends with respect to time are similar for OVG and FEATHERS. However, as can be seen, the FEATHERS trips tend to be over-estimated in the evening and somewhat under-estimated in the morning period. This tendency is a result of the way the scheduler core tries to solve conflicting, overlapping activities and trips. Indeed, in case of a conflict, the scheduler tries to postpone the conflicting activity or trip. Despite the tendency to skew trip starts, the trends for OVG and FEATHERS in Figure 1 correspond well.

4.6.3 Validation of the FEATHERS activity-travel space dimension

This part of the validation uses the data provided by the Belgian decennial 2001 census to look at the trends pertaining to trips. One of the benefits of the census lies in the fine geography of the data where links between the worker residence and workplace location are available. But more importantly, besides the fine geography, the census forms a completely independent data source that can be used in order to validate trips generated by FEATHERS.
While the census data forms a powerful and independent data set for comparison with FEATHERS, there are some difficulties pertaining to this comparison. First of all the census asks about specific trips only, namely the usual travel to work and school, however the usual travel for other purposes is not obtained. So therefore, it is only possible to compare work and school trips as observed in the census with the corresponding trips as predicted with FEATHERS. Secondly, the census covers all persons in the population including young persons under the age of 18. FEATHERS on the other hand only regards adults of age higher or equal to 18 years because the underlying transport model ALBATROSS imposes this limitation. This means that a lot of school trips are missing in FEATHERS, more specifically those trips made by youngsters on their own. School trips where parents bring and get their children to school do appear in the predicted set of trips so this partly makes up for the drawback of the model inside FEATHERS. Thirdly, the FEATHERS base year is the year 2007, while the census, as it is a decennial survey, stems from the year 2001 which is the last available census.

Despite these shortcomings in comparison, the census can still be used as in this part of the validation process the primary focus is on the spatial patterns pertaining to trips in Flanders, and not on the actual number of trips. Here, FEATHERS’ trip patterns are evaluated for reasonableness based on the indicative census spatial trip pattern as a reference.

To be able to compare patterns in the census trips and FEATHERS trips every OD pair of the census is joined with the corresponding OD pair in FEATHERS. This way it becomes possible to see whether or not the number of trips belonging to each FEATHERS OD pair is of the same order of magnitude as the number of trips related to the corresponding census OD pair. By applying a linear regression model it now becomes possible to identify the correlation between the census and FEATHERS trips.

Figure 2 shows the results of the linear regression analysis in case all OD pairs are included in the analysis. As can be seen on Figure 2 a strong linear relationship is seen between the census observed number of trips and the FEATHERS predicted number of trips indicating that FEATHERS replicates the trip pattern as seen in the census across Flanders nicely. The linear regression model yields an $R^2$ of 0.9743 however care must be taken when interpreting this regression result. As can be seen in the figure on the upper-right side, there are 4 OD pairs with a high number of trips as some major cities in Flanders attract many trips. These OD pairs have a large impact on the regression model.
Therefore, in a second step, the same OD pairs, excluding the 4 high-value OD pairs, are being used to perform a linear regression yielding an $R^2$ of 0.8938 which still indicates a strong correlation between the census observed number of trips and the FEATHERS predicted number of trips.

![Predicted vs. Observed Trips](image)

**Figure 2** Predicted versus observed number of trips for each OD pair

Based on the linear regression models it can be concluded that the model inside FEATHERS is able to replicate, to a large degree, the spatial trip pattern that can be observed in the independent census. It suggests that the model has successfully picked up the key conditions, contexts and rules that individuals use to organize their daily trips. These findings, overall, show that FEATHERS can predict observed work trip patterns quite well, even though the rules underlying the model inside FEATHERS are based on data pertaining to a totally different travel survey.

### 4.6.4 FEATHERS validation in terms of traffic counts and vehicle kilometers travelled

The final phase of the validation process involves a validation of the assigned car driver traffic demand after assignment to the road network. This is achieved by modeled traffic volumes on network links with traffic counts from the field. Since time-of-day modeling is performed within FEATHERS, 24 hourly matrices are at one's disposal for the traffic assignment step and therefore the traffic counts comparison will be made at the level of AM, PM and OP time slots.
Table 2 summarizes for a 24 hours day and for 5 different time slots of an average day, the correlation, as expressed in \( R^2 \) values, between modeled traffic volumes on network links with observed traffic counts. As can be seen, \( R^2 \) values for the time slots range between 0.74 and 0.77. However, for 4-step models, a suggested \( R^2 \) value of more than 0.88 has been proposed in literature (Assignment Procedures Travel Model Improvement Program, 2011, and Federal Highway Administration, 2001).

At this point, an important remark is in place concerning the rather low value of the \( R^2 \) correlation. In this study, only the decision trees inside the FEATHERS model are calibrated, i.e. trained, based on activity-based travel diaries. No other kinds of calibrations based on traffic measurements were performed. Each model part hands over its output to the next model part until the complete sequence of the model chain has been walked through. Therefore, it is expected that the FEATHERS model chain will result in a lower goodness-of-fit, achieved between observed behavior and the base year prediction. However, in case traffic counts were used in order to calibrate the activity-based model inside FEATHERS, higher correlation values could have been anticipated. Recently it has been demonstrated by Cools (2010) that it is by all means possible to actively link activity-based models with traffic counts. Two approaches exist that calibrate such models with traffic counts - an indirect and a direct approach. The indirect approach tries to incorporate findings based on the analysis of traffic counts into the components of the activity-based models. The direct approach calibrates the parameters of the travel demand model in such a way that the model replicates the observed traffic counts (quasi-) perfectly. This study demonstrated that different options exist in fine-tuning activity-based models. Therefore, it may be concluded that in case such a calibration process would be established within FEATHERS, higher values for the \( R^2 \) correlation can be foreseen.
For the current situation, this rather low value for $R^2$, which can be improved by means of traffic counts calibration processes, does not cast a slur on activity-based models since such kind of models do have significant advantages over traditional 4-step and other kind of transport models. It is well-known from literature that one of the major promises and reasons for existence of the activity-based modeling approach is an increased sensitivity for scenarios that are generally important in transport planning and policy making. In contrast to trip-based and tour-based models, activity-based models are sensitive to institutional changes in society in addition to land-use and transportation-system related factors. Such changes may be related, for example, to work times and work durations of individuals and opening hours of stores or other facilities for out-of-home activities. It is this sensitivity to a very wide range of possible changes that constitutes the attractiveness of the activity-based modeling approach over other transport modeling approaches.

<table>
<thead>
<tr>
<th></th>
<th>Reported VKT</th>
<th>Predicted VKT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>46.71</td>
<td>45.03</td>
</tr>
</tbody>
</table>

Table 3 Reported VKT versus predicted VKT ($\times 10^9$ km)

As a last part of the validation process the focus is put on vehicle kilometers travelled. The total Vehicle Kilometers Travelled (VKT) is defined here as the total number of kilometers travelled by road users on a yearly basis. It is a function of the number of trips generated and the length of those trips, which depend on the OD pairs and the route choice. Using FEATHERS, for every hour of the day and for every day of the week, OD matrices can be generated and assigned to the network. Once the OD matrices are assigned, for each hour and for each day of the week, the traffic intensity on each link is known. By selecting Flemish roads only and by aggregating the products of network link lengths and traffic intensities on the associated links one can obtain the VKT for 1 specific hour and day combination. By doing so for all 168 available OD matrices, thus for every car mode OD matrix for every day of the week and for every hour of the day, and by assuming that a simulation week is representative as an average week across a year, total vehicle travel can be calculated. Table 3 shows the predicted total vehicle kilometers travelled for the 2007 base year and compares it with the official reported values by the government for the same year. As can be seen, the difference between both values is small implying that predictions are close to reality.
4.7 Conclusion and discussion

This chapter presented the different steps in the operationalization of the first static activity-based model implemented inside the FEATHERS framework. To this end the ALBATROSS scheduling core was implemented and updated for the Flemish region. In addition, data about the study area such as activity-based diaries, population and environment data was collected and compiled in the database structure of FEATHERS. Next to this operationalization, a validation on different levels, i.e. model-, time-, space- and network level was performed. Based on the validation results, it is concluded that the presented activity-based model is able to realistically mimic the spatial and temporal dimension of transportation demand in Flanders, as well as the evolution of the state of the road network in both space and time. As the model performs well, a next step is to investigate transportation demand management policies for Flanders.
References


Chapter 5  An estimation of total vehicle travel reduction in the case of telecommuting. Detailed analyses using an activity-based modeling approach

Concerning activity-based models, there are many conceivable practical applications possible. Applications can range from aging scenarios, towards public transport level of service scenarios, over opening hours scenarios, towards travel-time and travel-costs scenarios. In this chapter, by means of the activity-based model inside FEATHERS, a specific application is worked out about an estimation of the total vehicle travel reduction in the case of a telecommuting scenario. To this end, first a more traditional methodology for calculating reductions as a result of telecommuting is elaborated on, where after the outcomes of this method will be placed next to FEATHERS’ output. As will turn out, based on the results, FEATHERS and its activity-based model generate credibility so that in regard with this specific telecommuting scenario, FEATHERS can be used for policy making.


Transportation Demand Management (TDM) is often referred to as a strategy adopted by transport planners with the goal to increase transport system efficiency. One of the possible measures that can be adopted in TDM is the implementation of telecommuting. A significant number of studies have been conducted in the past to evaluate the effect of telecommuting on peak-period trips. However it is less studied whether telecommuting also effectively and significantly reduces total vehicle travel. For this reason, a conventional modeling approach was adopted in this chapter to calculate total kilometers of travel saved in the case telecommuting would materialize in the Flanders area. In a second part, the chapter also introduces the use of an activity-based modeling approach to evaluate the effect of telecommuting. By doing so, an operational activity-based framework is externally validated by means of
another completely different model, both calibrated for the same application and study area.

5.1 Introduction

According to a study by the United Nations (Anon., 2004), population growth will show a significant rise in the years to come. Population growth together with employment and motor vehicle growth in cities and even rural environments can have a large effect on the region’s transportation system. Travel demand management (TDM) is therefore seen as an important means to counteract travel. Moreover, it increases the performance of the transportation system through the encouragement and support of alternative modes of travel such as carpooling, vanpooling, transit, bicycling, and walking. However, TDM also endorses for example different work tables and reorganization of work implementations such as flex-time work schedules, which can rearrange and roll back demand on the transportation system.

The past decade showed a trend in increasing telecommunications technology. The emergence of this technology offers employees the opportunity to work from distant locations, other than the employer’s site. Employees choosing for this type of work conditions are referred to as ‘telecommuters’. As a TDM, telecommuting could offer some prospects for reducing trips, however it is not clear whether telecommuting also effectively and significantly reduces total vehicle travel.

At the start of the millennium, telecommuting has been adopted in nearly all of the European countries. Many of these countries with an already relatively high degree of telecommuting also experienced higher growth rates in the five year period 2000 to 2005 (Welz and Wolf, 2010). Among these countries, the percentage of telecommuters more than doubled in Belgium. The figures from the previous study have been confirmed by Statistics Netherlands (Centraal bureau voor statistiek, CBS) who came across the conclusion that the share of companies employing telecommuters has doubled within four years (Statistics Netherlands, 2009). Because of the growing interest in telecommuting, both by employers and employees and because telecommuting could be used as a TDM, it is interesting to investigate the impact of telecommuting on traffic in terms of total vehicle travel.

This chapter therefore addresses the assessment of the impact of telecommuting on traffic in terms of total vehicle travel by means of the activity-based simulation platform FEATHERS (Bellemans et al., 2010). However, next to
FEATHERS another method for assessing the impact of telecommuting will be employed so that both results can be compared.

5.2 The FEATHERS activity-based simulation platform

Transportation problems are structurally multi-dimensional by nature. Indeed, traffic congestions are related to CO₂ emissions but they also have an influence on for example the economy. At the same time the necessity for transportation infrastructure is high due to globalization, urbanization, sprawl, etc. and in addition to this governments cannot afford transportation hindrances to have a negative impact on future competitiveness. However, changing the current infrastructure is sometimes costly, there is not always a certainty for success and changing infrastructure is not always easy or feasible due to existing spatial zones, constitutional constraints by local and federal governments, etc. Therefore, transportation models are often used as they can assist in ex-ante management decision making and they can make predictions in unforeseen and uncertain situations. Therefore, the goal of these models is to mimic reality as close as possible.

In the past different approaches have been used, such as conventional trip-based models where single trips are predicted following a simple 4-step mathematical calculus (Ruiter and Ben-Akiva, 1978), without taking information about timing or sequences of trips into account. Therefore these conventional trip-based models were often replaced by tour-based models. While the tour-based approach captures more of the behavioral interactions across trips, it can still miss some important ones. For example, the mode of travel and departure times for the work-based sub-tour will tend to be constrained by the mode of travel and departure times for the home-based work tour that "surrounds" it. Also, changes to one tour can also influence the aspects of other tours made during the day. Activity-based models, on the other hand, aim at predicting which activities are conducted where, when, for how long, with whom, the transport mode involved and ideally also the implied route decisions. The major advantages of this type of models is that (i) it can deal simultaneously with the participation in various types of activities across the full day, which means that inter-tour relations can be accounted for and (ii) a micro simulation approach is often adopted which allows for taking into account a higher behavioral realism of the individual agent in the model.
The activity-based scheduling model that is currently implemented in the FEATHERS framework is based on the scheduling model that is present in ALBATROSS (Arentze and Timmermans, 2005). Currently, the framework is fully operational at the level of Flanders. The real-life representation of Flanders, is embedded in an agent-based simulation model which consists of over six million agents, each agent representing one member of the Flemish population. The scheduling is static and based on decision trees, where a sequence of 26 decision trees is used in the scheduling process. Decisions are made based on a number of attributes of the individual (e.g., age, gender), of the household (e.g., number of cars) and of the geographical zone (e.g., population density, number of shops). For each agent with its specific attributes, it is for example decided if an activity is performed. Subsequently, amongst others, the location, transport mode and duration of the activity are determined, taking into account the attributes of the individual.

5.3 Travel demand management strategies that can be addressed within FEATHERS

It is well-known from literature that one of the major promises and reasons for existence of the activity-based modeling approach is an increased sensitivity for scenarios that are generally important in transport planning and policy making. In contrast to trip-based and tour-based models, activity-based models are sensitive to institutional changes in society in addition to land-use and transportation-system related factors. Such changes may be related, for example, to work times and work durations of individuals and opening hours of stores or other facilities for out-of-home activities. Furthermore, the models should not ideally only be sensitive to primary but also to secondary responses to land-use and transportation-related changes that in the past have been responsible for unforeseen and unintended effects of transport demand measures by policy makers. Examples of a primary response are changing transport modes, reducing frequency of trips or changing departure time. The primary response can thus be defined as the choice of a strategy which is aimed at reducing a negative impact or increasing a positive impact of the policy. A secondary response then involves adaptations which are required to make the broader activity pattern consistent with the change. Typical examples of such possible effects are an increase of out-of-home social activities in response to measures stimulating telecommuting or an increased use of cars for shorter trips as a secondary effect of stimulating car-pooling for trips to work (car stays at
home and can then be used by other members of the household). Also, by means of example, switching from car to public transport for trips to work may limit the possibilities for trip chaining and hence induce extra separate trips as a secondary response.

Potentially, activity-based models should be sensitive to several groups of TDM, including: population, schedule, opening-hours, land-use measures as well as travel costs and travel time scenarios. As Arentze and Timmermans (2005) described, in terms of population scenarios, several large trends can be potentially evaluated, for instance the increasing participation of women in the labor force, the increasing number of single-adult households resulting in a decreasing average number of persons per household, the increasing household income as a consequence of general economic growth, the aging of the population in terms of graying and de-greening, the increasing number of cars per household etc. Also institutional changes in society, for instance by means of the implementation of a workweek or work start time changes can be modeled in an activity-based framework. A similar application is the widening and shortening of opening hours of for instance service related facilities. Not only time-specific measures can be evaluated, but also spatial scenarios can be computed. For instance, there might be a need to evaluate the result of an increasing spatial separation of locations for residence, work and facilities as a consequence of sub-urbanization or alternatively, a concentration of facilities in commercially attractive neighborhoods. Finally, typical travel-time or pricing scenarios can be computed by means of the new operational activity-based models.

However, in addition to the more traditional policy measures mentioned above, the applicability of TDM can be increased to environmental and health effects, using the activity-based paradigm as a starting point. Indeed, general traffic policy measures influence road safety, emissions and human health in an indirect way, i.e. indirectly through exposure. First results, using an activity-based model for analyzing emission and health impacts, have been reported in Beckx et al. (2007).

### 5.4 Estimating the impacts of telecommuting on travel: Method of Mokhtarian

Before explaining the employment of the FEATHERS system to calculate a possible reduction in travel, another method is being used as a benchmark. One such method, by Mokhtarian (1998) allows one to estimate the impacts of
telecommuting on travel, given a series of variables. The model consists of two parts. In the first part an estimation is made of the current number of telecommuters based on the total number of employees and the possibility and willingness of the employees to implement telecommuting. The second part estimates the reduction in total vehicle travel by telecommuters which will subsequently be expressed as a percentage with respect to the total vehicle travel in Flanders on one working day. In the next section the different calculation steps of the model are elaborated.

5.4.1 Introduction

Before explaining the employment of the FEATHERS system to calculate a possible reduction in travel, another method is being used as a benchmark. One such method, by Mokhtarian (1998) allows one to estimate the impacts of telecommuting on travel, given a series of variables. The model consists of two parts. In the first part an estimation is made of the current number of telecommuters based on the total number of employees and the possibility and willingness of the employees to implement telecommuting. The second part estimates the reduction in total vehicle travel by telecommuters which will subsequently be expressed as a percentage with respect to the total vehicle travel in Flanders on one working day. In the next section the different calculation steps of the model are elaborated.

5.4.2 Calculation steps

Table 1 lists all the different steps for calculating the reduction in total vehicle travel in the case of telecommuting.

The model starts with the number of employees during an average work day (E). This first determinant equals to 2504000 for Flanders in 2002.

A study performed by Empirica (Kordey, 2002) showed that the proportion of employees that are able and willing to telecommute (C) amounted to 10.6% for Belgium in 2002. Since there are no data available for the number of telecommuters in Flanders, the data for Belgium is used in this model (Kordey, 2002).

According to a study performed by Walrave and De Bie (2005) 53.3% telecommute less than 1 time per week, 21.3% 1 to 3 days per week and 25.2% more than 3 days per week. This means that for telecommuting employees, the
average telecommute frequency \( (F) \), equals 1.8 days per week or 36% of the work week.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>( E )</td>
<td>The number of employees during an average work day</td>
</tr>
<tr>
<td>( C )</td>
<td>Proportion of employees that are able and willing to telecommute</td>
</tr>
<tr>
<td>( F )</td>
<td>Average telecommuting frequency</td>
</tr>
<tr>
<td>( O )</td>
<td>The expected number of telecommuters during an average work day</td>
</tr>
<tr>
<td>( D )</td>
<td>Average back and forth home-work distance during a non-telecommuting work day</td>
</tr>
<tr>
<td>( \alpha )</td>
<td>Proportion of the number of telecommuting opportunities that eliminates a home-work trip</td>
</tr>
<tr>
<td>( V )</td>
<td>The total eliminated home-work distance during an average work day</td>
</tr>
<tr>
<td>( P )</td>
<td>The net change in total vehicle travel as a proportion of the total vehicle travel during an average work day</td>
</tr>
</tbody>
</table>

![Image of table](image_url)

Table 1 The impact of telecommuting on travel (method of Mokhtarian)

The expected number of telecommuters during an average work day \( (O) \) is calculated by multiplying all preceding variables, that is \( O = E \times C \times F \). For study area Flanders this multiplication equals 95553 telecommuters per work day.

According to the Flemish study OVG (Zwerts and Nuyts, 2002) the average home-work distance amounts to 19 km. This means that, on average, employees cover 38 km between the home location and the employer’s premises. However, other studies also indicate that on average telecommuters live further away from their actual place of work when compared to non-telecommuters (Pidaparthi, 2003). Therefore, a factor of 1.5 is being considered as a correction factor (Verbeke et al., 2006). Because of this factor the average back and forth home-work distance during a non-telecommuting work day for telecommuters equals to 57 km.

The proportion of the number of telecommuting opportunities that eliminates a home-work trip \( (\alpha) \) is calculated by dividing the share of car drivers by the average seat occupancy. According to OVG (Zwerts and Nuyts, 2002) 68.6% of employees use transport mode car as an option to commute. In addition to this, Statistics Belgium (Anon., 2002) reports a seat occupancy of 1.369 so that variable \( \alpha \) equals to 0.501.

The total eliminated home-work distance during an average work day \( (V) \) is calculated by multiplying the expected number of telecommuters during an...
average work day \((O)\) with the eliminated home-work distance \((\alpha D)\) as a result of telecommuting. For Flanders this yields 2728707 of eliminated home-work kilometers during an average work day.

The net change in total vehicle travel as a proportion of the total vehicle travel during an average work day \((P)\) is calculated according to following formula: \(V x S / (R x M)\) where \(R\) stands for the number of persons in Flanders in possession of a driver's license and \(M\) stands for the average distance in kilometers per capita in possession of a driver's license during a calendar week. In Flanders, in 2002, approximately 4043573 persons had a driver’s license (Zwerts and Nuyts, 2002) and the average distance in kilometers came to 210 km. On the basis of these data the net change in total vehicle travel as a proportion of the total vehicle travel amounts to 1.6%. This means that in 2002, in Flanders, the total travel distance decreased with 1.6% as a result of telecommuting.

### 5.5 Estimating the impacts of telecommuting on travel: FEATHERS

#### 5.5.1 Introduction

A second approach for calculating the impacts of telecommuting is based on the Activity-Based model FEATHERS. This method first aggregates travel demand in OD matrices and subsequently assigns these OD matrices to a transportation network. This method is followed by the calculation of the total vehicle travel for a null scenario and for a telecommuting scenario. Afterwards both the null and telecommuting scenario are compared so that the change in total vehicle travel can be obtained.

Since FEATHERS is run for a specific day, 7 predictions are worked out and averaged for a week so that the reduction in vehicle travel can be compared with the first method.

#### 5.5.2 Implementation of the telecommuting scenario

Currently the FEATHERS framework incorporates the core of the ALBATROSS Activity-Based scheduler. This scheduler assumes a sequential decision process, consisting of 26 decision trees, that intends to simulate the way individuals solve scheduling problems.

The scheduler first starts with an empty schedule or diary where after it will evaluate whether or not work activities will be included. If this is the case, then the number of work activities will be estimated (1 or 2 work activities), their
beginning times, their durations and also the time in-between the work activities in case 2 work activities are present.

In a second step the locations of the work activities are determined. The system sequentially assigns locations to the work activities in order of schedule position. This is done by systematically consulting a fixed list of specific decision trees.

After the locations of the work activities have been determined, the telecommuting scenario comes into play. A dedicated procedure randomly selects employees as telecommuters and assigns a new location to the work location(s) in the schedule. The proportion of telecommuters selected is exactly the same as for the first method, namely \( C \times F = 0.038 \). Furthermore, the selection procedure also takes into account the fact that telecommuters show an average back and forth home-work distance during non-telecommuting work days that equals to 57 km. This last assumption is necessary to make a correct comparison with the first method.

After the selection of telecommuters has been done, their work location(s) will be replaced by the home address and their schedules will be updated with this new information. This way telecommuters work at home instead of the usual employer’s premises.

Now that telecommuting has been enforced, the scheduler returns back to normal scheduling and proceeds with the next decision steps, that is: selection of work related transport modes, inclusion and time profiling of non-work fixed and flexible activities, determination of fixed and flexible activity locations and finally determination of fixed and flexible activity transport modes.

5.5.3 Derivation of OD matrices

The output of FEATHERS consists of activity-travel diary data sets for 7 days for both the null and telecommuting scenario. These diaries include several modes of transport, however, since we focused on car mode only in the first method, only trips done by car are taken into account.

For each hour of the day and for each day of the week, these diary data sets are processed yielding 168 OD matrices when focused on car mode only. This large amount of OD matrices will then serve as input for the traffic assignment part.

5.5.4 Traffic assignment

Traffic assignment models are used to estimate the flow of traffic on a network. These models take as input a matrix of flows that indicate the volume of traffic
between origin and destination pairs. The flows for each OD pair are loaded onto the network based on the travel time or impedance of the alternative paths that could carry this traffic.

A wide variety of traffic assignment methods exist. A well-known assignment method is the All-or-Nothing assignment, which uses a shortest path method to assign traffic to the network. This method, however, ignores the fact that link travel times are flow dependent. Therefore, for this study, an equilibrium traffic assignment model was selected. This kind of traffic assignment uses an iterative process to achieve a convergent solution in which no travelers can improve their travel times by shifting routes. In each iteration, network link flows are computed which incorporate capacity effects and flow-dependent travel times.

As an illustration, figure 1 shows the equilibrium traffic assignment of the FEATHERS output for 8 o'clock on Monday.

### 5.5.5 Calculation steps

Once the OD matrices are assigned for each scenario, for each hour and for each day of the week, the traffic intensity on each link is known. By selecting Flemish roads only and by aggregating the products of network link lengths and traffic intensities on the associated links one can obtain the total vehicle travel for 1 specific hour and day combination. By doing so for all 168 OD matrices and by
assuming that each simulation day is representative as an average day across a year, total vehicle travel can be calculated.

<table>
<thead>
<tr>
<th>Day</th>
<th>Null scenario vkm (10^9)</th>
<th>Telecommuting vkm (10^9)</th>
<th>Difference (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon</td>
<td>0.137</td>
<td>0.134</td>
<td>-1.96</td>
</tr>
<tr>
<td>Tue</td>
<td>0.141</td>
<td>0.138</td>
<td>-1.89</td>
</tr>
<tr>
<td>Wed</td>
<td>0.135</td>
<td>0.132</td>
<td>-2.16</td>
</tr>
<tr>
<td>Thu</td>
<td>0.138</td>
<td>0.135</td>
<td>-2.11</td>
</tr>
<tr>
<td>Fri</td>
<td>0.136</td>
<td>0.134</td>
<td>-1.96</td>
</tr>
<tr>
<td>Sat</td>
<td>0.119</td>
<td>0.118</td>
<td>-0.95</td>
</tr>
<tr>
<td>Sun</td>
<td>0.102</td>
<td>0.102</td>
<td>-0.31</td>
</tr>
<tr>
<td>Total sum</td>
<td>0.909</td>
<td>0.894</td>
<td>-1.68</td>
</tr>
</tbody>
</table>

Table 2: Total vehicle travel by car

Table 2 summarizes these calculations from Monday till Sunday. If the total vehicle travel for the telecommuting scenario is compared with the null scenario situation then we can highlight a reduction of 1.68%.

5.5.6 Additional micro simulation analyses in FEATHERS

As can be observed in literature and among transportation researchers, some proponents of the activity-based paradigm claim that activity-based models tend to be better suited for predicting travel behavior, supporting the notion that aggregate models ignore important behavioral distinctions across the population. In this chapter, while comparing vehicle travel reductions based on the outcomes of the traditional method presented by Mokhtarian and the more complex method brought by FEATHERS, only aggregated vehicle travel reductions were calculated simply because of the fact that the method of Mokhtarian is aggregated by nature. However, as FEATHERS accommodates an activity-based model, more detailed calculations concerning vehicle travel reductions can be made. Therefore, in this paragraph, additional and more detailed analyses will be made on the output of FEATHERS. However, before considering vehicle travel reductions, first general tendencies in differences in travel behavior with regard to regular workers and teleworkers will be examined.

Figure 2 shows the distribution of the share in persons performing n trips per schedule, for all persons in the FEATHERS population. In this graph, regular workers are placed next to teleworkers. This way, interesting differences can be seen between workers and teleworkers. First of all, when having a look at the
general pattern, the share of teleworkers executing n trips monotonously decreases with increasing number of trips per schedule. Whereas regular workers show an exception in this monotonous decrease in the case of 4 trips per schedule. Apparently there are more regular workers performing 4 trips than 3 trips.

A second phenomenon that can be found is the fact that there are more teleworkers than regular workers that perform non-work related trips, in case the number of trips per schedule is rather low. When the number of non-work related trips is higher, starting from 3 non-work trips per schedule, then there are approximately as many teleworkers as regular workers.

Figure 3 reveals the difference in behavior between regular workers and teleworkers when having a look at the share of persons performing n tours per schedule. As can be seen, in general, there are more workers performing n tours than teleworkers. This is a very intuitive result, as it might be expected that workers at least have to perform a single work trip in order to arrive at their work premises.
The graph depicted below, in figure 4, shows the distribution of the number of persons performing n trips in their tours. As can be seen clearly, there are more teleworkers than workers performing 2 trips in a tour.
Furthermore, there seems to be an approximately equal share of persons performing 3 trips in a tour, while, as the graph shows, there are less teleworkers than workers performing 4 and more trips. Also this result is very intuitive as we can expect that workers combine more activities in their path to their work premises or while going back to home. Such activities might be bring/get, daily shopping, non-daily shopping, leisure, services and other activities.

Figure 5, depicted below, shows the distribution of the share in activity sequences in a schedule for all persons in the FEATHERS population. As can be seen in this graph, teleworkers perform different kind of tours when compared with regular workers. As the graph shows, workers tend to perform a lot of only-work related tours. The same workers will also try to combine work activities with other kind of activities such as bring/get, flexible and other activities. Teleworkers on the other hand will especially perform only-non-work related trips, even much more than in the case of regular workers. Also this result is plausible as it might be expected that regular workers will try to combine their work related trips with non-work related trips, meaning that the share of persons performing only-non-work trips will be much lower.

![Figure 5 Tour activity sequence distribution: Work vs. Telework](image)

Figure 5 Tour activity sequence distribution: Work vs. Telework (Legend: 1 = Work, 2 = Bring/get, 3 = Flexible activity, 4 = Other activity)
Now that some differences of travel behavior between regular workers and teleworkers have been demonstrated by means of a micro-simulation framework, the original problem statement of proving that it is possible to calculate disaggregated vehicle travel reductions according to different kind of dimensions with a micro simulation framework like FEATHERS, can be resumed.

<table>
<thead>
<tr>
<th>Day</th>
<th>Gender</th>
<th>Null scenario</th>
<th>Telecommuting</th>
<th>Difference (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>Male</td>
<td>50.73</td>
<td>15.77</td>
<td>-68.92</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>41.84</td>
<td>10.55</td>
<td>-74.78</td>
</tr>
<tr>
<td>Tuesday</td>
<td>Male</td>
<td>49.12</td>
<td>15.56</td>
<td>-68.32</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>41.93</td>
<td>10.52</td>
<td>-74.91</td>
</tr>
<tr>
<td>Wednesday</td>
<td>Male</td>
<td>49.74</td>
<td>15.71</td>
<td>-68.41</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>42.71</td>
<td>11.46</td>
<td>-73.17</td>
</tr>
<tr>
<td>Thursday</td>
<td>Male</td>
<td>50.98</td>
<td>16.23</td>
<td>-68.17</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>42.35</td>
<td>11.47</td>
<td>-72.93</td>
</tr>
<tr>
<td>Friday</td>
<td>Male</td>
<td>50.03</td>
<td>15.95</td>
<td>-68.12</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>42.65</td>
<td>11.41</td>
<td>-73.25</td>
</tr>
<tr>
<td>Saturday</td>
<td>Male</td>
<td>60.55</td>
<td>25.95</td>
<td>-57.15</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>44.53</td>
<td>12.70</td>
<td>-71.47</td>
</tr>
<tr>
<td>Sunday</td>
<td>Male</td>
<td>59.80</td>
<td>24.62</td>
<td>-58.83</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>44.30</td>
<td>13.33</td>
<td>-69.91</td>
</tr>
</tbody>
</table>

Table 3 Total trip length (km) by car in schedule according to gender

To this end an example of a disaggregation of the vehicle travel reductions according to gender is worked out in table 3. As shown, this table gives an indication of the average reductions in travelled kilometers driven by car per day in case of a null-scenario and the telecommuting scenario. As can clearly be seen for all days is that females, compared to men, tend to drive less according to the null-scenario, however their vehicle travel reductions overall are higher when compared to men. This is a result that cannot be derived from traditional aggregated methods like the one worked out in this chapter. Therefore, these calculations based on FEATHERS, prove that micro-simulation activity-based models have significant advantages over traditional aggregated methods.

### 5.6 Conclusions

This chapter presented the calculation of the reduction in total vehicle travel for two entirely different methods. Nonetheless, the outcomes are quite similar. The first method shows a reduction in vehicle travel of 1.6% whereas the second approach, based on the Activity-Based modeling framework FEATHERS, displays a reduction of 1.68%. This can be seen as an extra validation result for
FEATHERS specifically but it also gives a lot of credibility in the application of Activity-Based models in general when dealing with travel demand management strategies.

Secondly, because of the usage of an Activity-Based model for calculating the total vehicle travel reduction, it is now also possible to obtain the reductions not only on a weekly basis, but also on specific days and even specific hours. This is hard to do with the more conventional straight-forward models such as the one used in this study.

Thirdly and lastly, because Activity-Based models are able to differentiate between many household and person characteristics such as gender, age, number of cars, etc., it is also possible to explore the effect or impact of a scenario such as telecommuting according to these characteristics. And this last observation is what makes Activity-Based transportation models a powerful tool.
References


Walrave, M., and De Bie, M. Teleworking@home or close to home. University of Antwerp, faculty political and social sciences, 2005.

Chapter 6  

Using activity-based modeling to predict spatial and temporal electrical vehicle power demand in Flanders

As in the previous chapter, also in this chapter an application of FEATHERS and its current activity-based model is discussed. Here, activity-travel schedules predicted by the activity-based model inside FEATHERS are used in order to predict energy demand and power peaks due to electric vehicle charging as a function of time and location for several electric vehicle market penetration scenarios and pluggable hybrid electric vehicle / battery-only electric vehicle ratios. This electric vehicle scenario can fully take advantage of the fine spatial and temporal detail in the travel demand forecasts by FEATHERS, and can in turn provide electric vehicle researchers with more accurate predictions. This scenario is more advanced and demonstrates that the range of applications of FEATHERS can be very wide. This scenario also proves that FEATHERS is designed not only for research purposes but also for more general application.

This chapter is adapted from: Knapen, L., Kochan, B., Bellemans, T., Janssens, D., and Wets, G., 2012. Using activity-based modeling to predict spatial and temporal electrical vehicle power demand in Flanders. Forthcoming in: Transportation Research Record: Journal of the Transportation Research Board

Electric power demand for household generated traffic is estimated as a function of time and space for the region of Flanders. An activity-based model is used to predict traffic demand. Electric vehicle (EV) type and charger characteristics are determined on the basis of car ownership and by assuming that EV categories market shares will be similar to the current ones for internal combustion engine vehicles (ICEV) published in government statistics. Charging opportunities at home and work locations are derived from the predicted schedules and by estimating the possibility to charge at work. Simulations are run for several EV market penetration levels and for specific BEV/PHEV (battery-only/pluggable hybrid electric vehicle) ratios. A single car is used to drive all trips in a daily schedule. Most of the Flemish schedules can be driven entirely by a BEV even after reducing published range values to account for range anxiety and for the over-estimated ranges resulting from tests according to standards. The current
low tariff electricity period overnight is found to be sufficiently long to allow for individual cost optimizing while peak shaving overall power demand.

### 6.1 Introduction

The economy’s dependency on fossil combustibles is attempted to be decreased for both environmental and strategic reasons. Resulting effects are an expected increase of electric vehicle (EV) use and use of alternative sources for electric energy production. Sustainable electric energy sources (wind, solar) deliver power at variable rates that cannot easily be predicted. Furthermore, storing electric energy is a major problem.

The use of EV generates challenging questions but also opportunities: when EV are used in a *vehicle to grid (V2G)* configuration, they can serve as electric energy storage devices. Designing and operating an electricity grid having lots of small unpredictable producers combined with relocatable storage capacity that is time dependent, is a complex problem.

The problem receives more than pure technical attention. White-House-NSTC (2011) states: President Obama has set a national goal of generating 80% of [the] electricity from clean energy sources by 2035 and has reiterated his goal of putting one million electric vehicles on the road by 2015.

### 6.2 Activity-based models to predict energy demand by electric vehicles

Activity-based modeling predicts daily schedules for people based on the behavioral characteristics for each individual. As a result, each individual actor can be designed to adapt in its own specific way to changes applied in scenarios when using feedback mechanisms during simulation. Activity-based models therefore allow for policy evaluation. The schedules generated by activity-based models contain information about the transport modes used and about the activity type, activity duration and activity location. As a result they provide the tools to investigate the feasibility of goals like the one stated in White-House-Nstc (2011) both by modeling in a closed loop, individual behavior change (adaptation) and the effect thereof on the public infrastructure.

This chapter explores the case for Flanders. The region counts 6 million inhabitants on 13000 square kilometers and is part of Belgium (Europe) (11 million inhabitants on 30000 square kilometers). The area is subdivided in 2368 zones. A synthetic population of actors has been built to mimic each inhabitant
of the study area. Actor behavior is determined by characteristics of the surroundings like road transportation network, distance between locations suited for specific types of activities, public transport availability, delays induced by congestion. The FEATHERS activity-based modeling framework described in Bellemans et al. (2010) has been used. Within FEATHERS, actor behavior is modeled by 26 decision trees, each one of which takes as input attributes of both the individual actor and the environment as well as the outcome of decisions already made. The decision trees have been trained by means of the CHAID method using data from regional time specific travel behavior OVG surveys. A single survey covers up to 8800 respondents. The decision trees are used to predict (in the order specified) attributes for work episodes, work locations, work-travel mode, fixed non-work activities, flexible non-work activities, non-work locations, non-work-travel mode. At this moment FEATHERS does not adapt actor behavior to car type (ICEV, EV). Car type is determined after schedule prediction. Resulting schedules are used to predict time and location for travel related electric energy consumption.

First it will be explained what hypotheses about EV drivers behavior have been made and how EV characteristics have been determined from literature and from available statistical data. Next, calculation details are described. Finally, results for the Flemish region are presented: area specific energy and power requirements as a function of time identify critical parts in the electric grid. The fraction of the household transportation market that can be served by EV without range extenders, is calculated.

### 6.3 Related work

Many research projects are driven by the goals to reduce greenhouse emissions. Recently European research has been focusing on the problem of matching the supply and demand of electric energy from sustainable sources (solar, wind). Cui et al. (2011) used a car selection model, a budget prediction model and an agent based simulator (stigmergy) to predict pluggable hybrid electric vehicle (PHEV) market penetration for Knox County (190000 households). Davies and Kurani (2011) predicted the electric power demand for the PHEV used by 25 households from data recorded in an experiment and from a PHEV car design game conducted by the households: the effect of work location charging is simulated. Kang and Recker (2009) and Recker and Kang (2010) used an activity-based model for California based on statewide travel diaries and several charging scenarios to predict the power demand for the whole area as a function
of time. Bliek et al. (2010) described how PowerMatcher predicts electric energy in a smartgrid containing small unpredictable solar and wind energy sources and tries to match supply and demand using an agent based auction for electric energy. Clement-Nyns et al. (2009) evaluated coordinated charging strategies for a Belgian case. In such systems customers need to specify time limits for charging (which can be produced by activity-based models). Waraich et al. (2009) evaluated energy tariff effects on charging behavior for the city of Berlin by coupling MATSim-T (travel demand simulator framework) to PMPSS (PHEV Management and Power Systems Simulation). Binding and Sundstrom (2011) described an agent-based simulator for an auction based energy pricing system aimed at matching sustainable power supply and demand: they planned to integrate the V2G (Vehicle to Grid) concept to temporary store energy in car batteries. Hadley and Tsvetkova (2008) predefined a charging profile and analyzed the effect on power demand when applying it to 13 US regions at different times of the day.

6.4 Smart grids and transport engineering

Smart grids are required when trying to meet electric energy demand in networks containing many small production units exposing difficult to predict behavior (solar, wind energy). Several techniques are used to try smoothing power requirement over time and to adapting it to uncontrollable time dependent production. With central coordination based schemes, the energy provider is allowed to turn on/off electric loads remotely. Other schemes rely on intelligence local to the consumer to determine electric demand at any moment in time: auction based configurations try to adapt demand to production by negotiating location specific prices every 15 minutes. Each one of those schemes requires intelligent components but also a lot of information about the environment and efficient adequate short time forecasting techniques. Activity-based models in transport engineering can contribute to the problem solution by creating adequate tools to forecast the energy and power demand as a function of time and location in order to decide when and where energy can be delivered proactively or stored in batteries for later retrieval. Several papers mentioned under section Related Work predict energy demand: they do so either for a small population or as an aggregated value for a wide region. Related work on smartgrid design, shows that the auction based pricing system simulators need predictions about when and where electric power is demanded. Therefore, this
paper estimates the electric energy and power requirements for Flanders using activity based modeling.

6.5 Electric energy demand evolution – Power demand

6.5.1 Energy demand

According to several sources (Parque et al., 2009, and Perujo et al., 2010) the total amount of energy drawn from the grid by electric vehicles is relatively small: a 30% market share EV would represent 3% of the total annual electric energy consumption for the region of Milan, Italy.

For a Flemish household, the estimated yearly amount of electric energy required by the car (0.2 kWh/km, 15000 km) is of the same order of magnitude as the amount of electric energy consumed by the household for other purposes (current electric energy consumption value). According to figures published on Oxford University Environmental Change Institute website (UO_ECI, 2011) the average yearly consumption for a Belgian household amounts to 3899 [kWh/year]. A similar figure (3500 [kWh/year]) for Belgium is mentioned by EABEV (2010). As a consequence, the relative contribution of transport in the overall demand, will grow significantly with increasing EV market penetration.

The evolution of electric energy demand per sector for Belgium is given by Ramage (2007). Total consumption in 2005 was 80.2 TWh. The transport sector contribution increases but amounted to only 2.12% in 2005. According to several sources (Ramage et al., 2010, and Parque et al., 2009) the energy demand by EV is not expected to cause problems on the electricity grid provided it is distributed over time.

6.5.2 Power demand

Activity-based models help to assess where and when peak power demand would exceed limits imposed by the grid. Perujo and Ciuffo (2010) studied power demand for the Milan region using the assumptions that people will not charge their car batteries everyday but only when needed and that charging starts between 16:00h and 19:00h in the evening obeying a uniform distribution over time. Parque and Ciuffo (2009) recognize the need for statistical values (estimated distributions) on daily commuter trips for a particular region. The study presented in this chapter uses activity-based modeling to calculate charging time and location resulting in a prediction of EV power demand.
6.6 The use of activity-based models

Electric energy demand estimates require detailed data about location and timing as well as trip purpose and activity information for each simulated individual. This chapter investigates following scenarios for charging of both battery-only EV (BEV) and pluggable hybrid EV (PHEV) in order to calculate peak power demand as a function of time and location starting from FEATHERS predicted schedules:

- **Scenario EarlyLowTariff**: people start charging as soon as possible during the low tariff period (night-time, reduced-rate electricity).
- **Scenario UniformLowCost**: people start charging at a uniformly distributed moment in time but so that their cost is minimal (maximum use of low tariff period).
- **Scenario LastHome**: people start charging batteries as soon as the car gets parked at the last home arrival of the day irrespective of any low-tariff period.
- **Scenario AlwaysAtHome**: people charge batteries immediately after each home arrival.

In all cases, charging period is assumed to be contiguous (uninterrupted) which means that no auction based dynamic pricing for fifteen minute charging blocks has been considered. Furthermore we hypothesize that everyone recharges batteries everyday due to range anxiety and furthermore that all cars are charged at home with additional charging at the work location in well defined cases only.

6.7 Electric vehicle fleet attributes

Since the EV market is only emerging, predictions cannot be based on extensive statistics. The assumptions in this chapter are explained and argued below.

6.7.1 Vehicle categories

Electric cars are subdivided into the categories small, medium, large similar to what is done in Perujo (2010).

In order to estimate the energy requirement, one needs to know the contribution of each category to the complete vehicle fleet. Belgian government statistics provide the distribution of registered cars along a classification based on the ICEV cylinder volume. We state the one-to-one mapping of categories
given in table 1 that shows market share and technical characteristics for each category. Vehicle characteristics in the table have been derived from data in Perujo (2010) and Nemry (2009), the market share figures have been taken from the Belgian federal government 2009 Transport Indicator statistics (Federal Planning Bureau, 2009).

<table>
<thead>
<tr>
<th>Vehicle categories</th>
<th>V&lt;1400</th>
<th>1400&lt;V&lt;2000</th>
<th>2000&lt;V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market share</td>
<td>0.496</td>
<td>0.364</td>
<td>0.140</td>
</tr>
<tr>
<td>EV category</td>
<td>small</td>
<td>medium</td>
<td>large</td>
</tr>
<tr>
<td>Battery capacity (kWh)</td>
<td>10</td>
<td>20</td>
<td>35</td>
</tr>
<tr>
<td>Range (km)</td>
<td>100</td>
<td>130</td>
<td>180</td>
</tr>
<tr>
<td>Energy consumption (kWh/km)</td>
<td>0.090</td>
<td>0.138</td>
<td>0.175</td>
</tr>
<tr>
<td>Energy consumption (kWh/km): lower limit</td>
<td>0.110</td>
<td>0.169</td>
<td>0.214</td>
</tr>
<tr>
<td>Charger type at home:</td>
<td>0.8</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>prob(3.3[kW])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charger type at home:</td>
<td>0.2</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>prob(7.2[kW])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charger type at work:</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>prob(3.3[kW])</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charger type at work:</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>prob(7.2[kW])</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Correspondence between EV and ICEV for categories specified in Belgian Government statistics.

6.7.2 Available chargers

Locally available 3.3 [kW] and 7.2 [kW] chargers are considered. Our model distinguishes between home and work location chargers. Charger type occurrence probability is given in table 1. The power value for home chargers is assumed to depend on the car category: smaller cars are equipped with a less powerful charger. On the other hand, companies offering car charging facilities are assumed to provide powerful chargers in order to save time and to extend the distance that can be bridged during one day. The company investment in a powerful charger is assumed to be a profitable one.

6.7.3 Company cars in Belgium

Employers are believed to allow company car (CC) drivers to charge at the work location because it is less expensive than providing fuel cards to employees. However, for technical reasons, not all companies can provide the required
infrastructure. The fraction of actors who can charge batteries at the work location has been determined as a fraction of company car drivers. It has been assumed that 50% of the CC drivers can charge at the work location.

The activity-based model inside FEATHERS predicts trips and provides information about car availability but not about car ownership (private vs. company owned). In order to estimate the number of people able to charge batteries at the work location, we need to estimate the fraction of work trips traveled by company car. The COCA (Company Car analysis) report (Cornelis et al., 2007) states that depending on the context, multiple definitions of a company car are in use because both fiscal and operational aspects are concerned. The COCA definition (A company car is made available by a company to an employee for both professional and private use) is used in our study. The same COCA report states that, based on two Belgian reports, OVG for Flanders and ERMMW for Wallonia, it can be concluded from data up to 2005, that 6% to 7% of the car fleet in use by Belgian households, is company owned (Cornelis et al., 2007). The OVG42 report (Cools et al., 2011) estimates the fraction of company cars available to households in 2009 to 10%.

The model presented in this chapter assumes that 10% of the actors driving to work, make use of a company car. Cars used in schedules without any work trips, are assumed to be privately owned cars (POC).

6.7.4 Relation between EV ownership and EV type

The portions of EV being PHEV are assumed to differ between privately owned and company cars. Currently no data about the respective expected market shares are available. PHEV rates 0.0, 0.5 and 1.0 for both CC and POC have been combined to run simulations.

PHEV do not have practical range limitations but long All-Electric-Range (AER) versions are more expensive than BEV. Temporal unavailability of a car induces high hourly costs for a company: the investment in a more expensive PHEV is assumed to be a profitable one. Private owners, on the other hand, are assumed to be more reluctant against large initial investments for private use.

6.8 Simulations

6.8.1 Method overview

The FEATHERS activity-based modeling framework (Bellemans et al., 2010) created by the Transportation Research Institute (IMOB) has been used to
generate activity-travel schedules (daily agendas for each individual of the Flemish population). Each schedule consists of trips and activities. For each trip, departure time, trip duration, origin and destination zones are predicted. For each activity, the purpose (e.g. work, shopping, bring-get, etc.) is predicted. In this study, only work and non-work activities are distinguished. FEATHERS results apply to a single 24-hour period. A working day simulation has been used. Energy and power demand are computed from FEATHERS results as follows. In a first step, schedules having at least one car trip are extracted and data structures are set up. In the second step, car ownership, possibility of work location charging, car characteristics (range, distance specific energy consumption, battery capacity) and the types of home and work location chargers used, are determined. Both a BEV and a PHEV belonging to a same category, are assigned to the schedule. A feasibility indicator is calculated which tells whether or not the schedule can be executed using the assigned BEV electric car (PHEV always is feasible since the internal combustion engine (ICE) always is available as a range extender). Each individual schedule is assumed to be executed using a single car and a predefined fraction of the company cars can get recharged at the work location. The set of schedules is partitioned as specified in figure 1.

Figure 1: Car users partitioning. (1) Work trip based partitioning follows from the activity-based model generated schedules. (2) Ownership (POC, CC) and the possibility to charge at work are specified by parameters.

For each one of the leaf node parts, the market share has been specified: the results shown in this study hold for 10% non-work trip and 10% work trip electrification. In the third and last step, charging scenarios are evaluated. Schedules are sampled from the partitions set up in the second step and the
start time for each charging operation is determined. Energy requirement and power demand are accumulated for every minute of the day for each one of the 2368 zones in Flanders.

### 6.8.2 Vehicle characteristics determination

Vehicle characteristics for each schedule are determined by random selection using the joint probabilities shown in the Bayesian network in figure 2. Arrows designate dependencies between probability densities. For example, the EV type depends on the ownership and on the fact that the schedule can be executed using a BEV (block BEV-feasibility). The shaded rectangle *Electrified* represents the probability density from which EV are sampled. The shaded rectangle *EnergyReq* represents the probability density for the electric energy required to complete all trips in the schedule. The ovals represent change of variable functions. Function $f(schedule, consumption)$ calculates whether or not the sequence of trips in a given schedule can be driven by a BEV given the stochastic value for the distance specific consumption of the vehicle and the charge opportunities in the schedule. Function $f(schedule, consumption)$ corresponds to the conditions detailed in equations 1 and 2 (see further).

The function $g(schedule, consumption)$ calculates the stochastic value for the energy required during each minute of the day for the given schedule.

---------------

Figure 2: Bayesian network showing conditional dependencies for stochastic variables. Continuous line rectangles designate probability densities. The domain for the variable is listed between curly braces. Each continuous line arrow designates a conditional dependency. Ovals designate change of variable functions. Dashed lines represent regular functional dependencies.
Vehicle characteristics are determined as follows:

- Vehicle *category* is randomly selected from the distribution specified in table 1.
- Vehicle *range* is selected from table 1.
- Work location charging is allowed for 0.50 of the company car drivers. Privately owned cars cannot be recharged at work. The charger power is randomly selected for both home and work location chargers using the distribution specified in table 1.
- Vehicle *consumption* is randomly selected using a uniform distribution in the interval specified for the vehicle category (from table 1). This is the consumption determined by official US and European standard test suites (FTP, WP.29) that do not account for cabin clima (heating, airco) nor for frequent acceleration and deceleration.
- The specific energy consumption as determined by European (UNECE WP.29 R101) and US standard methods is argued to be an underestimation (Elgowainy et al., 2010). The standardized test conditions differ from operating conditions: hence, a *range reduction coefficient* of 0.75 has been applied. The range reduction coefficient is used to adjust the specific consumption which is used in schedule feasibility and energy demand calculations. This is done for both BEV and PHEV in the same way.
- The battery capacity is derived from range and distance specific consumption and has been verified with data found in literature (Nemry et al., 2009, Wu et al., 2010, and Kromer et al., 2007).
- Different PHEV categories are considered and have been mapped to the categories small, medium and large respectively in order to determine the relative market shares (see table 1). The number in the category identifier designates the All Electric Range (AER) in kilometers.
- Finally, the charger power is randomly selected for both home and work location chargers using the distribution specified in table 1.

**6.8.3 BEV-feasibility**

In order to be feasible for a BEV, each location in the schedule shall be reachable when starting with a fully charged battery in the morning: this is expressed by the condition (set of $L$ inequalities)
\[
\forall i, j \in [1,\#L]: C_b - d_{0,i} \cdot \text{cons} + \sum_{j=1}^{j \leq i} t_j \cdot p_j \geq C_b \cdot DCD
\]  
(1)

where \(i\) and \(j\) are location indexes, \(C_b\) is the battery capacity, \(L\) is the set of all locations used in the schedule, \(t_j\) is the charge-period duration at the \(j\)-th location and \(p_j\) is the corresponding power, \(d_{0,i}\) is the total distance from the first origin to the \(i\)-th destination, \(\text{cons}\) is the distance specific energy consumption and \(DCD = 0.1\) is the maximal deep charge depletion coefficient. \(DCD\) has been applied to specify the minimal battery level that shall be available at all times; it is used to model range anxiety and is used in BEV-electrification feasibility calculation only. The condition that the battery cannot get over-charged is given by following set of inequalities using the same symbols

\[
\forall i, j \in [1,\#L]: C_b - d_{0,i} \cdot \text{cons} + \sum_{j=1}^{j \leq i} t_j \cdot p_j \leq C_b
\]  
(2)

### 6.8.4 Vehicle sampling

The vehicle type (BEV, PHEV) is determined using the conditional probability values specified under Relation between EV ownership and EV type above. The probability for a vehicle to be a PHEV is given by following expressions containing given probabilities in the right hand sides

\[
\text{P}_{\text{EV}} = P(\text{EV}|\text{CC}).P_{\text{CC}} + P(\text{EV}|\text{POC}).P_{\text{POC}}
\]  
(3)

\[
\text{P}_{\text{PHEV}} = P_{\text{CC}}.P(\text{EV}|\text{CC}).P(\text{PHEV}|\text{EV} \land \text{CC}) + P_{\text{POC}}.P(\text{EV}|\text{POC}).P(\text{PHEV}|\text{EV} \land \text{POC})
\]  
(4)

where \(\text{EV}\) designates Electric Vehicle, \(\text{CC}\) designates Company Car, \(\text{POC}\) designates Privately Owned Car, \(\text{PHEV}\) designates Pluggable Hybrid Electric Vehicle. It follows that

\[
\text{P}_{\text{BEV}} = \text{P}_{\text{EV}}.\left(1 - P(\text{PHEV}|\text{EV})\right) = \text{P}_{\text{EV}} - \text{P}_{\text{PHEV}}
\]  
(5)

where \(\text{BEV}\) designates Battery Electric Vehicle. Let \(N_v\) be the number of cars. A set of \(P_{\text{BEV}}.N_v\) elements is sampled from the set of schedules that can be executed by a BEV (the \(\text{BEV-feasible}\) schedules); then \(P_{\text{PHEV}}.N_v\) cars are sampled from all remaining schedules (BEV-feasible and BEV-infeasible ones).
6.8.5 Charging parameters

6.8.5.1 Assumptions valid for all scenarios concerned

Energy cost is assumed to conform to the current tariff scheme used in Belgium: it consists of one contiguous regular tariff period and one contiguous low tariff period during the night (from 22:00h to 07:00h). Furthermore, the schedules apply to a working day and schedules are assumed to repeat on successive days. This assumption allows to determine the period of time available for recharging overnight. Everyone is assumed to recharge batteries every day. Finally, when plugged to the electric grid, charging occurs during a single uninterrupted period of time.

For each schedule and each charging opportunity, the required charge duration for full recharge and the available charge period are calculated. The available charge period is determined from the arrival and departure times at the charge location. If the available period length is larger than the required charge duration, their difference is the slack time (otherwise slack time equals zero). A non-zero slack time implies a degree of freedom for selecting the time to start charging. In many cases, there is an interval \( \Delta t = [\tau_0, \tau_1] \) of starting times \( \tau_s \) such that \( \forall \tau_s \in \Delta t \) the energy cost is the same.

6.8.5.2 Scenario specific assumptions

- Scenario EarlyLowTariff: If \( \Delta t \) is contained in the low tariff period, the actor starts charging as soon as possible; otherwise, in the case where the charge period contains the low-tariff period, the actor starts charging as late as possible thereby pushing energy demand to the morning hours. This scenario conforms to the situation where people are using simple timers to start charging.
- Scenario UniformLowCost: Each actor tries to minimize energy cost by charging during the low tariff period as much as possible. The charge period start time \( \tau_s \) is chosen from \( \Delta t \) by random selection using a uniform distribution.
- Scenario LastHome: All actors ignore the existence of a low-tariff period and start charging immediately when arriving at home after the last trip of the day.
• Scenario **AlwaysAtHome**: All actors ignore the existence of a low-tariff period and start charging immediately when arriving at home after each home arrival.

Note that scenarios **EarlyLowTariff** and **UniformLowCost** are energy cost minimizing scenarios at the individual actor level, but the other ones are not.

### 6.8.5.3 Aggregation of micro simulation results

Battery charging opportunities are identified during micro simulation and inserted in the schedules according to the applied scenario. For each charge opportunity, the required power is accumulated and recorded for each minute in the charging period. This process results in a power requirement time series for each zone. Plots are generated for the zones having maximal energy requirement (power integrated over time) and maximal power peak value for the full day, the normal-tariff period and the low-tariff periods respectively.

### 6.9 Summary of results for the Flemish region

FEATHERS statistics and energy demands have been summarized in table 2. Scenarios are identified by the ratio of the EV fleet being a PHEV for company cars (CC) and privately owned cars (POC) respectively. Replacing BEV by PHEV increases power demand since longer distances are driven on electricity. PHEV can exhaust the full AER while BEV can drive distances strictly smaller than the anxiety reduced range only.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>FEATHERS activity-based modeling prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Fraction of actors performing work trips</td>
</tr>
<tr>
<td>All</td>
<td>Fraction of actors performing car trips</td>
</tr>
<tr>
<td>All</td>
<td>Fraction of car using schedules containing work activity</td>
</tr>
<tr>
<td>All</td>
<td>Average work related car trip distance (km)</td>
</tr>
<tr>
<td>All</td>
<td>Fraction of trips that are work trips</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario</th>
<th>EV Energy demand calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC=0.0 and POC=0.0</td>
<td>Total energy demand</td>
</tr>
<tr>
<td>CC=0.5 and POC=0.5</td>
<td>Total energy demand</td>
</tr>
<tr>
<td>CC=1.0 and POC=1.0</td>
<td>Total energy demand</td>
</tr>
</tbody>
</table>

Table 2: FEATHERS Results Statistics.

Table 3 shows the fractions of BEV-feasible schedules determined in the second step (accounting for work location recharge). Note that only 10% of the
schedules having a work trip have been assigned a company car in the scenarios considered. Almost 78% of the trips is BEV-feasible when the EV category coincides with actual ICEV market shares given in table 1.

<table>
<thead>
<tr>
<th>Partition</th>
<th>Fraction of the car using schedules</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>When charging after last home arrival</td>
</tr>
<tr>
<td>BEV-feasible schedules without work trips POC (NW)</td>
<td>0.364</td>
</tr>
<tr>
<td>BEV-feasible schedules with work trips POC (W_POC)</td>
<td>0.357</td>
</tr>
<tr>
<td>BEV-feasible schedules with work trips CC, chargeAtWork (W_CC_CAW)</td>
<td>0.020</td>
</tr>
<tr>
<td>BEV-feasible schedules with work trips CC, no chargeAtWork (W_CC_NCAW)</td>
<td>0.024</td>
</tr>
<tr>
<td>BEV-Infeasible</td>
<td>0.235</td>
</tr>
</tbody>
</table>

Table 3: Car-using Schedule Partitions with respect to Feasibility for Electrification

Figure 3: Power demand for EV charging as a function of time. The thin line holds for UniformDist (cost minimizing, random), the thick line for AlwaysAtHome and the dashed line for LastHome.
Figure 3 shows the power demand for an area with 5835 inhabitants for scenarios UniformLowCost, LastHome and AlwaysAtHome. The power peak for UniformLowCost (individual actor cost minimizing) is the bigger one and the peak shifts from about 20:00h to about 02:30 between scenarios. Note that the power demand shown is to be added to the already existing zone-specific demand but at the time of writing only countrywide aggregated time dependent electricity consumption data were available; hence data have not yet been presented geographically to pinpoint problematic areas. The result shows that it is worth extending the activity-based model to make it sensitive to electricity prices.

The power peak for scenario EarlyLowTariff at 22:00h amounts to eight times the UniformLowCost peak value because everyone is assumed to start charging at the same moment using a timer. This peak is expected to cause problems for the electric grid and has not been included in the diagram.

Table 4 shows the fraction of charge opportunities used and the daily charge frequency for each use case partition and scenario. BEV and PHEV owners are assumed to share the same charging behavior.

<table>
<thead>
<tr>
<th>Partition</th>
<th>Home charging scenario</th>
<th>EarlyLowTariff</th>
<th>UniformLowCost</th>
<th>LastHome</th>
<th>AlwaysAtHome</th>
</tr>
</thead>
<tbody>
<tr>
<td>NW</td>
<td>FracOp</td>
<td>NumCh</td>
<td>FracOp</td>
<td>NumCh</td>
<td>FracOp</td>
</tr>
<tr>
<td>W_POC</td>
<td>0.853</td>
<td>1.000</td>
<td>0.850</td>
<td>1.000</td>
<td>0.854</td>
</tr>
<tr>
<td>W_CC_CAW</td>
<td>0.822</td>
<td>1.000</td>
<td>0.822</td>
<td>1.000</td>
<td>0.823</td>
</tr>
<tr>
<td>W_CC_NCAW</td>
<td>0.911</td>
<td>2.194</td>
<td>0.914</td>
<td>2.199</td>
<td>0.905</td>
</tr>
<tr>
<td>W_CC_CAW</td>
<td>0.817</td>
<td>1.000</td>
<td>0.828</td>
<td>1.000</td>
<td>0.821</td>
</tr>
</tbody>
</table>

Table 4: Fraction of charge opportunities used (FracOp) and number of charge operations per day (NumCh) for each scenario and partition (N: No, W: Work, POC: Privately Owned Car, CC: Company Car, CAW: Can Charge at Work).

Table 5 shows absolute and relative energy demand for the scenario where 10% of the cars are EV and BEV/PHEV ratio is 50/50.

<table>
<thead>
<tr>
<th>Partition</th>
<th>Energy [MWh]</th>
<th>Relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>NW</td>
<td>BEV</td>
<td>PHEV</td>
</tr>
<tr>
<td>W_POC</td>
<td>280.346</td>
<td>414.969</td>
</tr>
<tr>
<td>W_CC_CAW</td>
<td>363.328</td>
<td>486.132</td>
</tr>
<tr>
<td>W_CC_NCAW</td>
<td>25.846</td>
<td>31.915</td>
</tr>
<tr>
<td>Total</td>
<td>689.647</td>
<td>961.126</td>
</tr>
</tbody>
</table>

Table 5: Absolute and relative daily energy demand when 10% of cars are EV and 50% of the EV are PHEV both for POC (privately owned cars) and CC (company cars) for scenario AlwaysAtHome.
Almost 60% of the energy consumption is by PHEV, almost 94% by privately owned cars.

6.10 Conclusions

Schedules predicted by the activity-based model inside FEATHERS have been used to predict energy demand and power peaks due to electric vehicle charging as a function of time and location for several EV market penetration scenarios and PHEV/BEV ratios. For the Flanders case, 78% of distances travelled daily using a single car on working days, seem to be BEV-feasible assuming that EV categories deployment conforms to current one for ICEV. Secondly, replacing BEV by PHEV increases electric energy consumption because PHEV can exploit their full electric range. Finally, the current reduced rate electricity period is sufficiently long to allow for charging period distribution over time in order to avoid unwanted power peak demand while allowing people to minimize cost.

6.11 Future research

Although activity based models have a firm statistical basis, some aspects of reality do not yet have been translated to AB-model parameters. Therefore, this study can be seen as the base for following research paths.

On the one hand, more accurate technical and market related data need to be determined from literature, surveys and experimentation. Data about distance specific energy consumption in real situations are based on measurements based on standards and are underestimated: they need to be refined (cabin clima effects). The amount of car users who are able to charge at home has not been considered a limiting factor for the current study but could be one of the main factors when estimating EV market share.

The software be extended to remove the constraint of using a single vehicle for schedule trips executed by multi-car households. The behavioral model is to be extended to integrate car selection decisions based on the actor specific charging decision strategy.

Finally, AB-models and smartgrid models need to get integrated in a closed loop. Since typical activity based models account for price elasticity and allow for learning, results feedback allows for evaluation of smartgrid strategies for charging timeslot allocation. Evaluation of the vehicle to grid (V2G) concept requires integration of smartgrid controllers with AB-models.
References


Davies, J., and Kurani, K., 2011. Estimated marginal impact of workplace charging on electricity demand and charge depleting driving. Scenarios based on plausible early market commuters’ use of a 5kWh conversion PHEV.


Chapter 7 Final discussion and conclusion

7.1 Conclusions

This section summarizes the main conclusions that evolved from this research. Research results can be classified under the following topics:

7.1.1 The PARROTS survey tool

A custom-made survey tool, PARROTS, was developed to assist in collecting activity-travel diary data and Global Positioning (GPS) based location data during trips. The idea of this new tool was to offer traffic researchers dealing with activity-based models a means for gathering in the field travel behaviour data of a higher quality than traditional paper-and-pencil survey systems. This PARROTS tool eventually has been deployed in a survey that was carried out on 2,500 households in Flanders. To be able to judge the effect of the PARROTS tool on the quality of activity-travel diaries, also a paper-and-pencil diary was designed and deployed as well.

In this dissertation, the impact on travel and location data quality of this GPS-enabled PDA data collection tool featuring consistency checks was discussed. This impact included both activity-travel diary data quality and GPS data quality. The quality of the GPS-based location data collection was assessed in terms of both quantity and quality of the obtained GPS logs. The location data quality was obtained using the fraction of GPS logs containing actual location information. Based on the GPS logger activity, a usage profile was obtained and compared to the location data resulting from the survey.

Based on the analyses done in this dissertation, it was concluded that PARROTS provided both high quality activity-travel diary data and GPS-based location information, while keeping the burden for the respondents at an acceptable level. This way, the PARROTS tool proved to be an object of value to the traffic research community.

7.1.2 The FEATHERS framework

In order to facilitate the development of dynamic activity-based models for transport demand, the FEATHERS framework was developed. For this framework, a four stage development trajectory was suggested for a smooth transition from the traditional four-step models towards an already achieved static activity based models (see next section) and dynamic activity based models in the
longer term. The development stages discussed in this dissertation ranged from an initial static activity-based model without traffic assignment to ultimately a dynamic activity-based model incorporating rescheduling, learning effects and traffic routing.

To illustrate the FEATHERS framework, work that was done on the development of both static and dynamic activity-based models for Flanders and the Netherlands was discussed. In line with this, the four stage activity-based model development trajectory was discussed in detail.

The presentation of the modular FEATHERS framework also discussed the functionalities of the modules and how they accommodate the requirements imposed on the framework by each of the four stages. In a last part, this work also concluded with a brief overview of the travel demand management strategies that can be addressed within the FEATHERS framework.

7.1.3 Validation of an activity-based model for Flanders

In this dissertation the development of an activity-based modeling framework was set as an important goal. However, in order to have a reason for being, the activity-based modeling framework discussed in this dissertation, FEATHERS, had to be equipped with a transport model of the activity-based category. For this purpose, the Dutch activity-based model ALBATROSS was adopted as a starting point for implementing an activity-based model in the FEATHERS framework. However, as the study area in this case is Flanders, the activity-based model had to be nourished with Flemish input data such as e.g. land use data, a synthetic population and a hierarchically built geographic study area layer. Furthermore, a survey revealing the travel behavior of the Flemish population had to be provided in order to train the decision trees inside the model for Flanders.

After the implementation phase, the activity-based model inside FEATHERS had to be validated in order to be sure of our grounds. As there are different kinds of dimensions pertaining to validation, the validation process was split up according to some major points of interest.

In a first part, a validation on the level of model components was performed. This part of the validation described the quality of the resulting trained decision trees, for each step in the decision process model. The predictive performance of each discrete choice decision tree was calculated by means of the Confusion Matrix Accuracy (CMA) measure. To be able to make a judgment about the predictive ability of these decision trees, a null-model for each tree was
calculated as well so that the relative performance of each tree could be determined. By comparing the null-models with the respective decision trees it became possible to see whether or not the decision trees were vigorous enough to score better than the null-models. As it turned out, all trees performed better than the null-model. For continuous decision trees however, another measure than the Confusion Matrix Accuracy was used, namely the Relative Absolute Mean Error (RAME), as no confusion matrix can be determined for these kind of trees. As could be demonstrated, the RAME for each decision tree separately was approximately the same for the training and validation set, implying that the decision trees performed quite well in case of unseen data cases.

In a second part, a validation according to the activity-travel time dimension was carried out. To this purpose, the number of trips distributed on a 24 hour axis were compared with official OVG reports. Despite the fact that raw OVG survey data had been used in order to train the activity-based model inside FEATHERS, the official OVG reports released by the government were used for this validation as there were no other current time-related and independent data sets available for Flanders. As could be observed, the trip trends with respect to time were similar for OVG and FEATHERS. However, FEATHERS trips tended to be over-estimated in the evening and somewhat under-estimated in the morning period. Nevertheless, despite the tendency to skew trip starts, the trends for OVG and FEATHERS corresponded quite well.

In a third part, FEATHERS was validated according to the activity-travel space dimension. This validation process utilized the data provided by the Belgian decennial 2001 census to look at the trends pertaining to trips. One of the benefits of the census was that the census formed a completely independent data source that could be used in order to validate trips generated by FEATHERS. Based on linear regression models, that compared the number of trips for each FEATHERS and census origin-destination pair, it could be concluded that the model inside FEATHERS was able to replicate, to a large degree, the spatial trip pattern that could be observed in the independent census.

As a last part of the validation process the focus was put on vehicle kilometers travelled. Using FEATHERS, for every hour of the day and for every day of the week, OD matrices were generated and assigned to the network. By doing so for all available OD matrices, thus for every car mode OD matrix for every day of the week and for every hour of the day, the total vehicle travel was calculated on a yearly basis. Subsequently, the predicted total vehicle kilometers travelled for the 2007 base year were compared with the official reported values by the
government for the same year. As could be observed, the difference was very small, implying that predictions with FEATHERS were close to reality.

7.1.4 Traffic demand scenario's

In order to demonstrate the true potential of activity-based models, two traffic demand scenario’s were built. The first scenario that was implemented in FEATHERS is one that evaluates the effect of telecommuting according to the total kilometers of travel being reduced. For this scenario, also a more conventional modeling approach was adopted to calculate the total kilometers of travel saved in case telecommuting would materialize in the Flanders area. By doing so, the operational FEATHERS activity-based framework was tested on its ability to implement a scenario and, at the same time, FEATHERS was also externally validated once more on top of the original validation process. As it appeared, for both the conventional calculation method and the first FEATHERS scenario, total kilometers of travel reductions were equal indicating that FEATHERS, on the one hand, is capable of implementing a traffic demand scenario such as telecommuting, and on the other hand, as stated before, the equality of the total kilometers of travel reductions is also indicative of a well-validated activity-based model.

The second scenario that was implemented was a scenario that has been subdivided in 4 scripts where for each of the 4 scenario scripts the spatial and temporal electrical vehicle power demand was calculated for Flanders. To this end, FEATHERS was first used to predict activity-travel schedules for all adult inhabitants of Flanders so that for those inhabitants the activities and trips were known throughout the day. Subsequently, in a second step, the electrical vehicle power demand could then be calculated under 4 different and possible electrical vehicle charging scenario scripts. The first scenario script assumed that people start charging their electrical vehicle as soon as possible during the low tariff period at night-time. The second one assumed that people start charging at a uniformly distributed moment in time however at minimal cost. In the third scenario script people started charging batteries as soon as the car got parked at the last home arrival and the last scenario script assumed that people charge batteries immediately after each home arrival. Simulations ran for each scenario script revealed that for Flanders, it is feasible for 78% of all car trips that they can be performed by a battery-only electrical vehicle. Secondly, replacing battery-only electrical vehicles by pluggable-hybrid electrical vehicles could increase electric energy consumption because pluggable-hybrid electrical
vehicles can exploit their full electric range. And finally, calculations revealed that the current reduced rate electricity period is sufficiently long to allow for charging period distribution over time in order to avoid unwanted power peak demand while allowing people to minimize costs.

### 7.2 Future research

Developing an activity-based modeling framework for implementing activity-based models was an important accomplishment in this Ph.D. research. Applying the developed model chain to the Flemish region was another important realization. However, some challenges still remain to improve both the activity-based model and the FEATHERS activity-based modeling framework. For a wide variety of problems and topics, recommendations are mentioned which can or should be applied to improve the work presented in this dissertation. In this section, these challenges are briefly described and discussed.

#### 7.2.1 Redressing equilibrium between traffic demand and traffic supply

The activity-based model inside FEATHERS does not contain a traffic model that assigns traffic onto a network. In a next step this should be done so that FEATHERS generates OD matrices that will be assigned on a network including a feedback loop to the traffic demand part of the model. At equilibrium the demand for travel must be consistent with the network performance in servicing that level of demand. The importance of the need to find the point of equilibrium with some accuracy must be emphasized. In practice, there is no direct way of calculating the equilibrium solution, and it is necessary to set up iterative procedures, hence a feedback loop is needed as indicated before.

The outcome of this exercise would be new travel time matrices that would function as new input to the activity-based model inside FEATHERS. New travel time matrices would lead to new and adjusted activity-travel patterns. This exercise would have as a goal to investigate whether or not this procedure would yield added value to the modeling approach. It would also have to indicate if plausible results will be obtained and whether this well-conceived iterative system would converge to a unique equilibrium solution and if so, how many iterations would be involved. Issues that will have to be investigated are computational accuracy and the possibility to limit computing time. In addition, it is also conceivable that the iterative system is not well conceived. This could mean that it takes a very long time to converge, at worst, that convergence is
not obtained at all. In order to address this issue, it would be necessary to develop some criteria for correct model convergence. For a detailed model such as the one that has been implemented in FEATHERS, the total number of demand estimates tends to be large, and while it would be possible to test each element for its stability, the requirement for compromise would mean that these criteria may have to be defined at more aggregated levels. However, while the procedure at first sight might appear to converge according to these criteria, in practice stability might not be achieved at more detailed levels. These and more issues should all be investigated into more detail.

7.2.2 Activity travel planning and rescheduling behavior

Travel behavior research of the past few years has shown an increasing interest in dynamic activity scheduling. In line with this observation, research could be done to analyze factors influencing the actual activity scheduling process by using the detailed activity travel data from the extensive data set collected for Flanders by means of the PARROTS survey tool.

It is generally accepted in activity-based research that executed activities are the result of a complex scheduling process in which activity episodes are inserted, deleted, and modified, and that attributes other than activity type alone are required to model the scheduling process. Most activity-based scheduling models, however, assume that activities are scheduled in a fixed order and do not attempt to model activity rescheduling. This means that activity scheduling is almost always considered to be a static process, whereas it is really a dynamic combination of (re)scheduling decisions. Recognizing this limitation of existing activity scheduling models, some researchers already developed conceptual frameworks describing the effect of time pressure on activity rescheduling. Particular models predict how individuals change their activity schedule during the day as a result of unexpected events or time pressure.

Since scheduling and rescheduling decisions are difficult to observe and since traditional trip- and activity-based diaries are not developed to collect this type of information, a specific computer-based survey instrument that has been designed in this Ph.D. research, namely PARROTS, can be used and already has been brought into action in order to gather empirical data on scheduling process dynamics. Studies reveal that some activities are scheduled days or even weeks in advance. Other activities, so-called impulsive activities, do not appear to be scheduled in advance. This kind of planning behavior can be derived by
analyzing the filled in PARROTS diaries where respondents were asked to fill in a planning of their activities before executing those activities.

The activity data, stemming from the PARROTS tool, and its changes in attribute values through time already has been investigated internally according to the (re)planning behavior of respondents. Moreover, currently, different models have been developed by members of our research group. One model examined the attributes that influence activity planning, while a second model analyzed the factors that affect activity rescheduling. Now that this point has been reached, the outcomes of both models could now be used in order to enhance the activity-based model inside FEATHERS so that more realistic scheduling and rescheduling decisions could be made. Adopting both models only requires extending the activity-based model inside FEATHERS by implementing the former models according to the programming paradigms, rules and concepts. This is a process that definitely should be elaborated on as research by our group members indicate that the rescheduling models might be very useful to the activity-based model inside FEATHERS.

7.2.3 A synthetic population creator

As has been demonstrated in this dissertation it is possible to build an activity-based model for Flanders inside the FEATHERS framework. However, if the model inside FEATHERS needs to be applied to a new study area, an important requirement is that the population of that study area needs to be forecasted. Not only for new study areas, but also in case Flanders is considered, then a solid synthetic population creator should be designed as well, so that different population changes and trends can be adopted while creating a new population in case of a scenario like for example an aging scenario or a migration scenario. Other scenarios or changes might be related to for example the proportion of single workers, the average number of household members, and so on.

Micro-simulation is suggested here to simulate each member of this synthetic population. One might think of techniques such as iteratively proportional fitting (IPF) to generate a sample consistent with known statistics of a target population of the study area. In IPF, the sample defines an initial frequency cross table of all attributes involved. Demographic data are also used to define constraints on marginal distributions of the tables. IPF is then applied to find cell proportions that are consistent with given marginals.

As can be done as additional research, in order to enhance and extend the FEATHERS framework, it would be convenient and practical to develop an IPF-
based method or another similar method that meets the data needs of the activity-based model inside FEATHERS while accounting for available data sources of the study area under concern. Therefore, it is decided to implement an approach as a synthetic population creator agent in the FEATHERS framework together with a suitable and user-friendly interface for editing the input data.

### 7.2.4 A more detailed transport mode choice model

In the ALBATROSS-based transport model implemented in the FEATHERS framework, a distinction is made between 4 types of transport modes, namely Car driver (by car as car driver), Car passenger (by car as passenger), Slow mode (walk, bike, moped, etc.) and Public transport (train, bus, metro, tram, etc.). However, even though all transport modes cover all kinds of vehicle types, the exact vehicle type is lost in this rough categorization. For example, if the model predicts that a trip has been carried out by Public transport, the exact transport mode (train, bus, metro, tram) is not known. The same applies for cars and slow mode.

Therefore, it would be interesting to extend the ALBATROSS-based transport model with transport modes that also take into account the vehicle type, so that next to these 4 generic transport mode categories, Car driver, Car Passenger, Slow mode and Public transport, we would also know which type of car and which type of public transport has been chosen.

As FEATHERS can be used for calculating emission scenario’s, it is of the utmost importance to know the type of car that has been used (gasoline or diesel driven engines) and moreover the car its age, as age also influences emissions. The same holds for Public transport where differences between trains and buses also affect emission calculations. But not only in case of vehicle emissions, but also in case of electrical vehicle scenarios it becomes important to get more insights into the use of those vehicle types.

Currently, different surveys are being employed, for example a survey where different types of Slow modes are investigated and classified. Also surveys for cars are needed so that more detailed vehicle types can be predicted based on, among others, household and person attributes.

Once that more information is known about those different vehicle types, their distributions among the population and when the relationship is known between user type and vehicle type, then a new transport mode choice model can be implemented in the ALBATROSS-based transport model inside the FEATHERS framework.
7.2.5 Retailoring the ALBATROSS-based transport model

In this research, the implementation of the ALBATROSS-based transport model into FEATHERS was achieved by first reverse engineering the original ALBATROSS model into its components and by combing out every single detail of this model. Therefore, after the implementation phase, the transport model inside FEATHERS shows a strong resemblance with ALBATROSS.

However, during the investigation of the computational process model inside ALBATROSS, the model core attracted the attention because of its complexity. It seems that a lot of decision trees are included in the model, and also each decision tree contains lots of condition variables that are being used in order to make decisions. In total 26 dimensions or choice facets need to be modeled. This observation raises the question whether this enormous number of decision trees, that also accommodate a lot of condition variables, is realistic. Moreover, one can ask whether or not the complexity might be reduced without reducing the predictive accuracy of the model core.

Within our research group, initiatives for investigating ALBATROSS’ complexity already has been undertaken in the past. To this end, complex and parsimonious models within ALBATROSS were applied and results of predictions were compared. Two different ways of attaining parsimony were achieved, the first one by applying simple heuristics like for instance One R and Naïve Bayes, and the second one by employing Feature and Variable Selection.

The conclusion of this research revealed that simple models do not perform better, but are also not inferior to more complex models. Moreover, findings endorse primary belief that people do not rely on a complex series of rules to make a decision indicating that ALBATROSS could be reduced in complexity.

The research described above was done based on the very first version of ALBATROSS where only 9 decision trees were being used. Currently ALBATROSS accommodates 26 decision trees, meaning that its complexity only increased over time. Therefore, it becomes even more paramount to have a look at the complexity of the currently implemented model core inside FEATHERS. Future research should bear this issue in mind to improve the transport model inside FEATHERS in terms of the number of decision trees and the number of condition variables. Moreover, also the scheduler dealing with these decision trees should also be investigated on its potential for reducing model complexity.
7.2.6 Extending FEATHERS with an urban simulation model

One of the underpinnings of the activity-based paradigm is that activities to be conducted generate trips. These activities generate trips because they are carried out at certain locations, separated from each other, so that these gaps will have to be bridged by means of trips. Therefore, one can easily see that those locations will have an impact on the trips that will be predicted by the transport model inside FEATHERS. Activities at locations not far from each other generate short trips, while locations that are more dispersive will tend to produce longer trips.

Based on the reasoning above, it is clear that extending FEATHERS with an urban simulation model can have an impact on the eventual locations where people perform their activities and hence on the trips pertaining to those activities. Currently, in FEATHERS, land use data is being used in order to predict where individuals will carry out their activities. For example, bring/get activities are typically performed at school locations, service-related activities can be performed at banks and post offices, and social activities could be carried out at any place except for example industrial environments.

An urban simulation model could nicely complement the already existing land use component inside FEATHERS. Urban simulation models here, are interpreted as operational models that attempt to represent dynamic processes and interactions of urban development and transportation. Urban systems nowadays are becoming more important as urban economies, social and political structures and norms, and transportation and other infrastructure systems and technologies evolve.

Urban simulation models can be used for location choice predictions, but equally important, because of the very nature of these dynamic urban simulation models, they can also be used in conjunction with a framework like FEATHERS in order to calculate different kind of scenarios. For example, one might think of impacts of proposed land use and transportation policies on trip patterns. Other scenarios could involve policies that are designed to promote densification, infill and redevelopment of certain locations. Also the effects of real estate development, distinguishing residential, nonresidential and mixed-use types, and the location of households and firms can be investigated with urban simulation models. Furthermore, also environmental scenarios are imaginable, as the impacts of environmental regulations that affect the development of environmentally sensitive lands can be assessed by means of urban simulation models. Also demographic processes can be tackled by means of urban simulation models,
implying that changes in household sizes and structures can be used in order to calculate ensuing changes in activity-trip patterns by making use of FEATHERS. As a last example, modeling economic growth also belongs to the possibilities of urban simulation models, where a macroeconomic component could be used to model economic activities in the region and hence related trip patterns when using FEATHERS.

All of the above examples strongly indicate that a solid urban simulation model could massively increase the number of scenario’s that can be implemented within the FEATHERS framework. Therefore, it should be underlined that sufficient amount of time should be invested in the development of an urban simulation model inside FEATHERS. It will only make FEATHERS more important and valuable for transport planners and researchers.
Summary

This dissertation describes the development and application of two software packages that can be used to assist transport researchers and practitioners.

The first software package, PARROTS, is an electronic survey tool that enables traffic researchers to carry out surveys yielding activity-travel diary data of a higher quality than traditional paper-and-pencil surveys. Furthermore, as this electronic tool is a GPS-enabled PDA data collection tool, it also provides the researcher with a rich GPS data set at the same time. To judge the effect of the PARROTS tool on the quality of activity-travel diaries, a paper-and-pencil diary was designed and deployed as well. Based on the analyses between the PARROTS survey tool and the paper-and-pencil survey, it could be concluded that PARROTS provides both high quality activity-travel diary data and GPS-based location information while keeping the burden for the respondents at an acceptable level.

The second software package, FEATHERS, is a modeling framework specifically designed for implementing activity-based transport models. As this framework became operational after a substantial development period, an already existing and proven activity-based model, namely ALBATROSS, was reverse engineered and re-implemented from the bottom up into the FEATHERS framework in order to prove this framework’s right to exist. As this process proved to be successful, following on the implementation phase of this activity-based model, a validation was performed on this model in order to demonstrate its capability to represent an activity-based model for Flanders, which was the study area of interest.

The validation of the activity-based transport model inside FEATHERS was split up according to different dimensions. In a first part, a validation on the level of the model components, i.e. decision trees was performed. This validation indicated that the decision trees of the activity-based model inside FEATHERS were capable of capturing people's travel behavior in a decent way. Moreover, based on some data-mining criteria, it could also be concluded that the decision trees were capable of predicting travel behavior of unseen test cases when compared with the cases of the model's training data set. In a second part, a validation of the FEATHERS model according to the activity-time travel time dimension was worked out. Here it was demonstrated that the model was able to replicate the so called "camelback" curve when compared with the same kind of curve stemming from the Onderzoek Verplaatsingsgedrag (OVG) survey. The
third part of the validation comprehended a model validation according to the activity-travel space dimension. For this purpose, a completely independent census data set was chosen in order to see whether or not the prediction data set within FEATHERS matched with this census data set. As it turned out, a very high correlation was found between both data sets indicating that the model inside FEATHERS was able to pick up the observed spatial travel patterns of the OVG survey respondents nicely. The fourth and last part of the validation was carried out in terms of comparing traffic counts and vehicle kilometers travelled of all predicted diaries with official governmental reports on those same kind of figures. To this end, within FEATHERS, activity-travel schedules were simulated for all the individuals of the Flemish population. Next, the predicted trips for the entire population were assigned to a road network and traffic flows were determined so that traffic counts and vehicle kilometers could be calculated. Also in this case, the model inside FEATHERS showed a very good correspondence with what can be seen in reality.

Now that the model inside FEATHERS was accepted, based on the detailed validation, two scenario’s were implemented so that FEATHERS could be brought into service. The first scenario comprehended the calculation of the total vehicle travel reduction in the case of telecommuting. To this end, also a more conventional method for calculating the total vehicle travel reduction was adopted. As became clear, both FEATHERS and the conventional method showed exactly the same reduction of travel in the case of the same telecommuting scenario. This similarity in figures therefore proved that FEATHERS can be used for modeling scenario’s such as the telecommuting scenario. The second scenario comprehended the assessment of the spatial and temporal electrical vehicle power demand for Flanders under 4 different electrical vehicle charging scenario scripts. To this end, FEATHERS was first used in order to predict activity-travel schedules so that in a second step, those schedules could be used in order to evaluate the charging power demand under 4 different scenario scripts. The results of those 4 scenario scripts revealed that most predicted trips can be performed by a battery-only electrical vehicle. Moreover, it could also be concluded that replacing battery-only electrical vehicles by pluggable-hybrid electrical vehicles might increase electric energy consumption as pluggable-hybrid electrical vehicles can exploit their full electric range. Overall, this electrical vehicle scenario proved that, next to the telecommuting scenario, FEATHERS can also be used for more specific and detailed scenario’s, paving the way for even more detailed future scenario’s.
In summary, this dissertation demonstrated that both software packages, namely PARROTS and FEATHERS, can be a true aid for traffic researchers and practitioners. As demonstrated, PARROTS can be used as an electronic state-of-the-art activity-travel survey tool, yielding data of high quality. FEATHERS, on his turn, can easily be used for implementing activity-based models for a specific study area and secondly, for working out scenario’s that can be employed for predicting different kinds of changes in the travel behavior of the Flemish citizen.
Samenvatting

Dit proefschrift beschrijft de ontwikkeling en de toepassing van twee software pakketten die gebruikt kunnen worden door transport onderzoekers en technici.

Het eerste software pakket, PARROTS, is een electronisch instrument dat onderzoekers kan ondersteunen om transport enquêtes uit te voeren waarbij de activiteiten-verplaatsingen data van een hoger niveau is dan het geval is bij de traditionele papier-en-potlood enquêtes. Bovendien, aangezien het PDA collectie instrument ook een GPS bevat, levert dit instrument de onderzoeker ook tegelijkertijd een rijke GPS data set. Om de kwaliteit van het PARROTS instrument te beoordelen wat betreft de verzamelde activiteiten-verplaatsingen dagboekjes, werd er ook een papier-en-potlood enquête samengesteld en ingezet. Op basis van de daarop volgende analyses van beide data sets, kan geconcludeerd worden dat PARROTS een hoog kwalitatieve activiteiten-verplaatsingen data set verschaf samen met GPS-gebaseerde locatie informatie, terwijl tegelijkertijd de belasting van de respondent op een acceptabel niveau gehouden kon worden.


De validatie van het activiteiten-gebaseerd transport model in FEATHERS werd uitgesplitst volgens verschillende dimensies. In het eerste deel, werd er een validatie uitgevoerd op de model componenten, namelijk de beslissingsbomen. Dit deel van de validatie toonde aan dat de beslissingsbomen van het activiteiten-gebaseerd model in FEATHERS in staat waren om het verkeersgedrag van de burgers vast te leggen. Bovendien, was het op basis van data-mining criteria ook mogelijk om vast te stellen dat de beslissingsbomen in staat bleken te zijn om het verkeersgedrag te voorspellen van nieuwe test records. In een tweede deel werd de validatie van het FEATHERS model volgens de tijdsdimensie uitgewerkt. Hier werd aangetoond dat het model in staat is om
de zogenaamde "kamelenrug curve" te voorspellen zoals ze voorkomt in de Onderzoek Verplaatsingsgedrag (OVG) enquête. Het derde gedeelte van de validatie behelsde aan model validatie volgens de ruimtelijke dimensie. Hiervoor werd een volledig onafhankelijke census data set gebruikt om te zien of de voorspelde data set in FEATHERS overeen zou komen met de census data set. Uit deze analyse bleek dat er een heel hoge correlatie bestond tussen beide data sets waaruit geconcludeerd kon worden dat het model in FEATHERS in staat was om de geobserveerde ruimtelijke verkeerspatronen van de OVG enquête op een ordentelijke wijze op te nemen. Het vierde en laatste gedeelte van de model validatie betrof een vergelijking van verkeerstellingen en totaal aantal voertuigkilometers tussen de voorspelde FEATHERS dagboekjes en officiële reporten van de overheid. Hiervoor werd eerst op basis van FEATHERS activiteiten-verplaatsingen patronen gesimuleerd voor al de Vlaamse burgers. In een volgende stap werden al de verplaatsingen van de Vlamingen toegekend aan een netwerk zodat verkeersstromen konden worden bepaald op basis waarvan verkeerstellingen en totaal aantal voertuigkilometers konden berekend worden. Op basis van deze analyse kon nogmaals worden aangetoond dat de voorspellingen op basis van FEATHERS een heel goede overeenkomst tonen met de werkelijkheid.

Nudat het model in FEATHERS op basis van de validatie geaccepteerd kon worden, werden er twee scenario’s geselecteerd om uitgewerkt te worden wat de uiteindelijke doelstelling van FEATHERS is. Het eerste scenario betrof een berekening van de totale voertuigkilometer reductie in het geval een deel van de bevolking zou telewerken. Om in te kunnen schatten of FEATHERS juiste resultaten zou opleveren werd er ook een conventionele berekeningswijze uitgevoerd en vergeleken met de berekeningen op basis van FEATHERS. Uit de vergelijking tussen beide berekeningen kon worden geconcludeerd dat FEATHERS exact dezelfde reductie in totaal aantal voertuigkilometers berekende als het geval is met de conventionele berekeningswijze. De sterke overeenkomst tussen beide resultaten toonde aan dat FEATHERS in staat is om scenario’s uit te werken vergelijkbaar met dit telewerken scenario. Het tweede scenario betrof een inschatting van de ruimtelijke en temporale component van de electrische voertuig energie vraag voor Vlaanderen gegeven 4 verschillende elektrische voertuig oplading scenario scripts. Hiervoor werd FEATHERS eerst toegepast om activiteit-trip dagboekjes te voorspellen om dan vervolgens, in een tweede stap, deze dagboekjes te gebruiken om de energie oplading vraag te evalueren, gegeven de 4 verschillende scenario scripts. De resultaten van deze 4 scenario
scripts onthouden dat de meeste trips uitgevoerd kunnen worden door een ‘battery-only’ elektrisch voertuig. Verder kon er ook afgeleid worden dat het vervangen van ‘battery-only’ electrische voertuigen door ‘pluggable-hybrid’ electrische voertuigen het elektrische energieverbruik zou kunnen verhogen aangezien ‘pluggable-hybrid’ electrische voertuigen hun volledige capaciteit kunnen benutten. Alles samen beschouwd, heeft het elektrische voertuig scenario kunnen aantonen dat, naast het telewerken scenario, FEATHERS ook gebruikt kan worden voor meer specifieke en gedetailleerde scenario’s, waardoor de weg gebaand kon worden voor nog meer gedetailleerde toekomst scenario’s.

Kort samengevat kan worden gesteld dat dit proefschrift heeft kunnen aantonen dat de beide software pakketten, namelijk PARROTS en FEATHERS, een ware hulp kunnen betekenen voor verkeerskundige onderzoekers en technici. Zoals aangetoond kon worden, kan PARROTS gebruikt worden als een electronische state-of-the-art activiteiten-verplaatsingen enquête instrument waarmee data van een hoge kwaliteit mee verzameld kan worden. FEATHERS, op zijn beurt, kan gebruikt worden om activiteiten-gebaseerde transport modellen te implementeren voor een specifiek studie gebied en bijkomend, voor het uitwerken van scenario’s die kunnen worden ingezet voor het voorspellen van allerhande veranderingen in het verplaatsingspatroon van de Vlaamse burger.