(a) 75 years of estimating the force of infection
(b) N. Hens¹,², M. Aerts¹, C. Faes¹, Z. Shkedy¹, O. Lejeune², P. Van Damme², P. Beutels²
(c)
¹ Interuniversity Institute of Biostatistics and Statistical Bioinformatics. Hasselt University, Diepenbeek, Belgium
² Centre for Health Economics Research & Modeling Infectious Diseases; Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute University of Antwerp, Antwerp, Belgium
(d) None
(e) Corresponding author:
Niel Hens
Interuniversity Institute of Biostatistics and Statistical Bioinformatics
Hasselt University
Agoralaan 1, Building D
B-3590 Diepenbeek, Belgium
Email: niel.hens@uhasselt.be
(f)
Niel Hens
Interuniversity Institute of Biostatistics and Statistical Bioinformatics
Hasselt University
Agoralaan 1, Building D
B-3590 Diepenbeek, Belgium
Email: niel.hens@uhasselt.be
(g) 75 years of estimating the force of infection
Summary

The force of infection, describing the rate at which a susceptible person acquires an infection, is a key parameter in models estimating the infectious disease burden, and the effectiveness and cost-effectiveness of infectious disease prevention. Since Muench formulated the first catalytic model to estimate the force of infection in 1934, exactly 75 years ago, several authors addressed the estimation of this parameter by more advanced statistical methods, while applying these to seroprevalence and reported incidence/case notification data. In this paper we present an historical overview, discussing the relevance of Muench’s work, and we explain the wide array of newer methods with illustrations on pre-vaccination serological survey data of two airborne infections: rubella and parvovirus B19. We also provide guidance on deciding which method(s) to apply to estimate the force of infection, given a particular set of data.
Introduction

Although epidemics were already documented by Hippocrates (458-377 BC), it was not until 1760 that mathematical modeling of infectious diseases was first documented in a publication by Daniel Bernoulli [1], who used a mathematical method to study smallpox infections. These and subsequent models at the very start of the 20th Century [2]-[5] focused on determining the infectious disease spread and the associated basic and effective reproduction number. Hugo Muench first proposed the concept of estimating the force of infection (at that time called the ‘effective contact rate’) as a key parameter in such mathematical models, in a publication entitled ‘Derivation of rates from summation data by the catalytic curve’ in the March 1934 issue of the Journal of the American Statistical Association [6]. His work became widely known only 25 years later with the publication of his book on ‘Catalytic models in epidemiology’ [7].

Before Muench’s seminal work, series of physicians’ case reports, i.e. incidence data, which are often affected by underreporting and misdiagnosis, were used to study the ‘effective contact rate’ of a given disease in a given population [8]. Muench suggested using a catalytic model on summation data to obtain a measure of the rate at which a susceptible acquires infection (and not necessarily disease). The name ‘catalytic’ was inspired by the similarity to the equations used to study the processes that drive chemical reactions. In his 1959 monograph [7], Muench referred to this effective contact rate as the force of infection (FOI). The importance of Muench’s catalytic model is the capacity to use test results on, for example, serological or saliva samples, in addition to reported incidence data, in order to estimate the FOI, especially for infections that leave permanent markers of immunity in their surviving hosts.
More explicitly, Muench stated that the simplest approach is to assume a constant effective exposure rate λ per unit of time t and that this rate applies to the entire population at all times. Nonetheless, the immune proportion π increases only to the extent that previously uninfected individuals can incur new infections. In addition, the model allowed that some fraction of the population cannot be infected at all. Muench’s catalytic curve can be written as

$$\pi(t) = k(l - e^{-\lambda t}),$$

where k is the proportion of the population that can be infected, π is the proportion of all previously infected (and immune) individuals prior to age t and l is the proportion of the population which may show evidence of exposure. Figure 1 illustrates the behavior of Muench’s model for different choices for k and l. Note that the model gives negative estimates of the proportion immune for $l < 1$ and thus interpretation is not straightforward in this case.

FIGURE 1 ABOUT HERE

Using the method of moments to estimate these parameters, Muench illustrated his approach on several datasets. These included intraperitoneal mouse protection test results for yellow fever in South America, a test which remains positive once an individual has been infected by yellow fever. He considered two regions; one in which the population was originally assumed entirely susceptible with frequent epidemics so that λ actually corresponded to a steady effective exposure rate. He compared these results with those of a second region where an outbreak of yellow fever occurred. He illustrated that these test results cannot show when individuals had been infected, only that it must have occurred at some time before taking the test. Indeed, by
analyzing summation data one estimates the probability of past infection at a certain time point and derives the FOI using the analytical expression in (i). The latter is based on the untestable assumption of time homogeneity.

Testifying its importance, numerous later publications echoed this inherent limitation of not being able to use direct data on person-time incidence but rather summation data to derive the FOI under the assumption of time homogeneity. Muench already discussed other complications such as test reversion rates, differential mortality, and passive immunity through transfer of maternal antibodies.

TABLE 1 ABOUT HERE

Although applicable to cumulative incidence data too, we illustrate Muench’s method on cross-sectionally collected seroprevalence data because of the above limitations of reported incidence data. We use two serological surveys, a first one on rubella in the UK, collected in 1986-1987 for males only [9]; and a second one on parvovirus B19 in Belgium, collected in 2001-2003 [10]. We make a number of typical common assumptions, i.e. that no portion of the population is free from exposure, a perfect test is used, the time homogeneity assumption holds, disease-related mortality is negligible compared to all cause mortality, infection confers lifelong immunity (in equation (i): \(l = k = 1 \)) and, specifically for rubella in the UK, that the school-girl programme that was implemented had negligible effect on the seroprevalence of rubella antibodies in males.

Whereas Muench originally used the method of moments to estimate the FOI, we cast his model in the maximum likelihood framework. More specifically, we use a binomial likelihood to relate
the age-specific prevalence (or cumulative incidence) to the age-specific observed proportion immune:

\[L(\lambda; y, n, a) = \prod_{i=1}^{N} \pi(a_i)^{y_i} (1 - \pi(a_i))^{n_i - y_i}, \tag{ii} \]

where \(a = (a_1, \ldots, a_N) \) denotes the age-vector of length \(N \); \(y = (y_1, \ldots, y_N) \) and \(n = (n_1, \ldots, n_N) \) denote the corresponding vectors of positive and total counts per age value. Assuming Muench’s model, \(\pi(a_i) \) in (ii) is given by (i). Maximizing the likelihood in (ii) with respect to \(\lambda \) yields the maximum likelihood estimate \(\hat{\lambda}_{ML} \).

The black curves in Figure 2 show the fitted seroprevalence and FOI curves together with the observed seroprevalence for both infections. The constant FOI was estimated 0.104 and 0.053 for rubella and parvovirus B19, respectively. The assumption of a constant FOI seems visually appropriate for the rubella data but inappropriate for the parvovirus B19 data (cf. Figure 2). Such observations led other researchers to develop new methods allowing for an age-dependent FOI.

FIGURE 2 ABOUT HERE

Standing on the shoulders of Muench

Muench’s work has led to the development of many models to estimate the FOI. These models can broadly be divided into *parametric* and *nonparametric methods*. Whereas parametric methods rely on specific functional relationships (e.g., Muench’s model is parametric since it assumes a constant FOI), nonparametric models relax such assumptions. In this section we present an overview of these different approaches. Starting with Muench’s work, Table 2, summarizes the key contributions with respect to the shape of the FOI, the focus of the analysis and the data used.
Parametric methods

Griffiths [11] was the first author to propose the use of a linear rather than a constant FOI to model measles incidence data from England and Wales for the period 1956-1969. With the above notation, his model could be formulated as

\[
\pi(t) = 1 - e^{-\int_0^t \lambda(\omega) d\omega},
\]

where \(\lambda(t) = \gamma_0(t + \gamma_1)I_{\{t > \tau\}}\), with \(\gamma_0, \gamma_1\) parameters to be estimated and \(\tau\) the threshold for inherited immunity. \(I_{\{t > \tau\}}\) denotes the indicator function taking value 1 if \(t > \tau\) and 0 otherwise.

In general, equation (iii) is the solution of the differential equation

\[
\frac{dx(t)}{dt} = -\lambda(t)x(t)
\]

(with initial condition \(x(0) = 1\) meaning that everyone is assumed susceptible at birth) that describes the changes in the proportion of susceptibles \(x(t) = 1 - \pi(t)\) with respect to time. Note that \(\int_0^t \lambda(\omega) d\omega\) denotes the cumulative FOI up to age \(t\) acting on susceptibles. Whereas Griffiths [11] described the estimation procedure outlined above as simple and straightforward to apply, he actually used an alternative method to model the measles incidence (rather than cumulative incidence) using a multinomial model and thereof estimated the attack rate.

Note that the catalytic model as presented in (iii) is actually a survival model and that the probability of past infection is the cumulative distribution function of the time to infection or alternatively one minus the survival function. The (cumulative) FOI is the (cumulative) infection hazard.

In general the change in the susceptible portion could be both age- and time-dependent. It is under the assumption of time homogeneity, age can be used to determine the time of infection.
and thus age and time are identified and (iii) is typically denoted in terms of age rather than time. Time homogeneity implies that neither the pathogen’s transmissibility, nor susceptible people’s receptiveness to infection (irrespective of their age), nor the frequency and intensity of interactions necessary for transmission to occur (eg, social contact patterns for air and saliva borne infections, sexual intercourse for Sexually Transmitted Infections) have changed substantially with time. In particular feco-orally transmitted infections (eg, hepatitis A virus, cholera) are documented to be time heterogenous, due to the drastic improvements in sanitary conditions in many settings over the last century [12][13]. Note that Schenzle et al. [13] argued that, for the case of hepatitis A, it is more appropriate to assume age-homogeneity and time-heterogeneity, and thus modeled time effects. The limitation of having to choose for either time or age may be overcome by use of data which is both age and time structured (see below).

Griffiths used maximum likelihood theory to estimate the parameters in the catalytic linear model and for the first time addressed the goodness-of-fit to the data using Pearson’s chi-square test. Interestingly, Griffiths justified his choice of a linear FOI by using a nonparameteric estimate for the FOI which was plotted against age and showed a linear trend. Note that Griffiths applied his model only up to age ten years as by then most children had been infected with measles. Griffiths’ work was later used by several other authors to model measles and other common childhood infections [14]. Griffiths’ 1974 contribution should be seen as the completion of the basic building block for the estimation of the FOI.

Grenfell and Anderson [15] extended Griffiths’ approach to encompass a general polynomial description of changes in the FOI with age and derived a stepwise maximum likelihood method for parameter estimation from data sets consisting of either case notifications or serological
information. This encompasses both Muench’s and Griffith’s catalytic model. The appropriate polynomial degree can be found by minimizing the relative deviance. Grenfell and Anderson discussed the advantages and disadvantages of using case notification data and serological data and stress that availability is the key criterion for which type of data to use [15]. For case notification data, the quality highly depends on the biases and inaccuracies of the case notification system. Serological databases too can suffer from the representativeness of the collected samples, as well as implicit assumptions for analysis, such as time homogeneity, lifelong immunity and the other complications listed above, duely noted by Muench [6]. Several of these issues gave rise to further research.

A first complication is that under the assumptions stated above, the model for the prevalence should be monotonically increasing with age. The monotonicity issue was not relevant for Muench and Griffiths since a model with constant or linear FOI always estimates a monotone prevalence. However, this is not necessarily the case with high order polynomials. In 1990, Farrington [16] placed the issue of monotonicity in the heart of the estimation problem. He noted that for measles, mumps and rubella, the FOI typically rises linearly from birth up to about 10 years of age, after which it drops off again for older ages. This qualitative form was also observed by Griffiths. Farrington considered a nonlinear model, i.e. an exponentially damped linear model, in age

\[
\lambda(a) = (\gamma_0 a - \gamma_1) e^{-\gamma_2 a} + \gamma_1,
\]

where \(\gamma_0, \gamma_1\) and \(\gamma_2\) are positive parameters that can be estimated using maximum likelihood and constrained optimization. The FOI in equation (v) is 0 for age 0, then shows a linear increase and ends in an exponential decay. Following Griffiths, Farrington [16] assessed the goodness of fit of his model using a nonparametric estimate of the FOI, i.e. a moving average, indicating again that
A more formal nonparametric approach for the estimation of the FOI is needed, at least in the exploratory stage.

Note that for specific choices of $\lambda(a)$, such as those proposed by Muench and by Grenfell and Anderson, equation (iii) corresponds to a generalized linear model (GLM, [18]) with binomial response and log-link. Other parametric models fitted within the framework of GLMs have been proposed since then using different link-functions such as the logit and cloglog link [19]-[31]. Among those, the most popular parametric model employed is the piecewise constant FOI where for predetermined intervals a constant FOI is assumed. The choice of these intervals is usually inspired by the intuitive relevance of the ages of mixing groups in the population (eg, pre-school, school, high school, etc). A drawback for the model of Grenfell and Anderson and many other parametric models is the probable occurrence of a negative FOI for some age-values or an unrealistic steep increase for higher age-values because of the chosen functional relationship. Farrington’s model is not a member of the GLM family, and deals with these issues by constraining the model based on prior knowledge. However, if that knowledge is unavailable or questionable, nonparametric options could be explored.

Nonparametric methods

Although nonparametric techniques were used before to assess the fit of a parametric, possibly nonlinear, function [11], Niels Keiding [32] was the first to explicitly use a nonparametric technique to estimate the FOI from serological data, based on the isotonic Kaplan-Meier
estimator of $1 - \pi(a)$ which finds its origin in survival analysis. Keiding also addressed the issues of time homogeneity, monotonicity, and censoring.

Most of the various nonparametric methods in the GLM framework developed since Keiding, involved estimating the (sero)prevalence by a nonparametric technique and subsequently deriving the FOI by $\hat{\lambda}(a) = \Delta \hat{\pi} / (1 - \hat{\pi}(a))$. Note that this latter expression for the FOI is a discretized version of (iv) with $x = 1 - \pi(a)$.

Among these nonparametric applications, spline-based methods have become very popular [10][33]-[36]. A spline can be seen as a concatenation of a rich number of local polynomials which are glued together in a ‘smooth’/continuous way. In 1996, Keiding proposed to replace the kernel smoother in his earlier work with a smoothing spline [19]. Subsequent work involved semi-parametric models [36]-[38], in which the age-specific prevalence is modeled nonparameterically and possible covariate effects such as gender are included in the parametric component of the model. The green (blue) curves in Figure 2 represent the (monotonized) estimated prevalence and FOI based on the spline methodology [10];[39][40].

Table 2 ABOUT HERE

Looking further at the different methods as applied to the rubella and parvovirus B19 data in Figure 2, several observations can be made. First, Muench’s model seems to fit the serological profile of rubella well, whereas it does not follow the pattern of the parvovirus B19 seroprofile. Farrington’s exponentially damped linear model shows an improved performance for rubella whereas the fit to the parvovirus B19 data seems reasonable except that it is not able to capture the decay in seroprevalence at about 25 years of age. The spline model shows a similar fit to the
seroprevalence data as the exponentially damped linear model for the rubella data, but some quantitative differences appear on the scale of the FOI.

Moreover, the spline model is able to capture the decaying seroprevalence at around the age of 25 years whereas its monotone version is a regularization to ensure a positive FOI. Indeed, when looking at parvovirus B19 in Figure 2 (right panel), the spline fit reveals a non-monotone pattern (green curve) whereas its monotonized version, applying a smooth-then-constrain approach, shows a monotone trend (green-blue-green curve) for the prevalence and a positive FOI. Based on the nonparametric fits, one might question which of the underlying assumptions is violated for parvovirus B19 in Belgium. This could for instance be due to antibody titers declining with time post infection, and eventually falling below the cut-off for positivity; or a time-dependence in the FOI resulting in a cohort effect, or the use of a manifestly imperfect test. It is only by contrasting different methods and the graphical exploration of the goodness of fit that such distortions appear [20].

When estimating the FOI from summation data, phenomena like these are often not taken into account because of the lack of information in the data and thus result in what is often referred to as an average profile. The methods that have been used to investigate the potential mechanisms behind such features mostly rely on contrasting mathematical models with incidence data. It seems hardly possible and beyond the scope of the current paper to list all papers that may have used Muench’s catalytic model as a starting point (without necessarily referencing it) to make extensions for such mathematical modeling studies. Nonetheless we further illustrate the vast influence of Muench’s pioneering work by listing some of the main examples of such extensions:

1) models assuming infection confers no or no lasting immunity. Examples of such analyses include Bordetella pertussis [41] and Haemophilus influenzae type b [42], transmission models
in which waning immunity was taken into account; (2) analyses describing the possible occurrence of seasonality [43][44] or regular epidemics [45]; (3) analyses on chronic infections (see e.g. [47]-[51]); (4) analyses taking into account vaccination programs (see e.g. [52][53][54]); (5) Further extensions of the more basic catalytic models have been used (see e.g. [54]).

A practical guide to estimate the FOI

The diversity of methods to estimate the FOI raises the question, given a particular data set, which method should be used? Figure 3 presents a guiding flow-chart, which starts from an exploratory stage in which a nonparametric model is fitted to the data. A graphical representation of such a fit is given in Figure 2. Given the epidemiology of the infectious disease under consideration and specific complications, such as diagnostic uncertainty, the shape of the nonparametric estimate and the goodness of fit to the data could show distortions with respect to monotonicity, maternal immunity and time-homogeneity. For each of these distortions, different remedial techniques are available, which are listed in the flow-chart (Figure 3). These techniques enable obtaining a “regularized” estimate of the FOI, which can be studied in detail, parametrized [55][56][57][58][59] and in turn can be used for the estimation of related parameters, such as the basic reproduction number [9][16].

Figure 3 ABOUT HERE
Muench Today: a road map to another 75 years?

Although, Muench’s model was overly simplistic in assuming a constant FOI, his 1934 paper already raised concerns with respect to model assumptions and data constraints, which are still today important research topics. There are a number of areas where recent research has produced interesting results, and in this section we highlight four of these.

1) **Time homogeneity is often assumed, as a necessary condition, if one can only use a single cross-sectional serological survey for estimating the FOI.** In some cases (e.g. parvovirus B19 in Figure 2), this seems questionable and might be untenable. If so, one needs longitudinal type of data (see e.g. [60]) or alternatively several prevalence surveys at different points in time [61][33]. Since similar distortions were observed for parvovirus B19 in four other countries [62], other hypotheses such as waning of naturally acquired antibody levels with time post infection need further investigation.

2) Antibody levels are commonly used to classify an individual’s sample as positive, negative or inconclusive based on a given test-specific threshold. This allows to estimate the proportion of susceptible people at each age, and to derive from these proportions the FOI by age. Mixture models are a natural alternative for this type of data. Gay [63] was the first to model age-stratified serological data using 2-component mixture models with age-dependent mixing probabilities and age-dependent mixture components. Using this mixture approach, Bollaerts et al. [64] proposed a direct estimator for an age-dependent FOI (i.e. without using a predefined threshold to distinguish susceptible from immune people).

3) As sera are often tested for more than one antigen, joint analysis for diseases with similar transmission routes can lead to new insights. Hens et al. [10] introduced the age-dependent joint and conditional FOI, a framework allowing formal statistical tests such as testing the assumption
of separable mixing. Earlier work on bivariate models [9][65] focused on the estimation of the basic reproduction number from serological survey data incorporating the effect of individual heterogeneity (see also [66]) and testing for separable mixing [9].

4) A fundamental concept for the estimation of the basic reproduction number is the mass action principle, relating the FOI with the transmission rate, i.e. the per capita rate at which an individual of a particular age makes an effective contact with a person of a specific age, per year. The transmission rates populate the so-called WAIFW-matrix [67], which is traditionally imposed to be of a particular structure (rather ad hoc, albeit inspired by e.g. social and schooling systems). Wallinga et al. [68] were the first to conceptually link seroprevalence data with data on conversational contacts per person, whilst assuming that transmission rates are proportional to rates of conversational contact. Using data from a social contact survey, Ogunjimi et al.[69] and Goeyvaerts et al. [70] proposed to disentangle the WAIFW-matrix into two components: the surface of conversational contacts and an age-dependent proportionality factor.

Discussion

Although the basic reproduction number is a very powerful and elegant summarising parameter at the heart of infectious disease transmission dynamics, the paucity of opportunities, and difficulties to obtain direct estimates of R_0, make the force of infection extremely relevant. Indeed, it may often be the parameter, which through its estimation allows all other parameters to be estimated.

In disease burden estimates, it determines estimates of the occurrence of infections, of clinical cases and all consequences arising from these cases (e.g. hospitalisations, deaths, life-years lost, Disability Adjusted Life Years). Also in studies estimating the impact of infectious disease
interventions, such as vaccination, in terms of effectiveness and cost-effectiveness, the force of infection will time and again rank high if not first among the most influential parameters determining the outcomes, and hence the public health policy measures based on these outcomes. Therefore estimating the force of infection as accurately as possible, is essential.

Muench’s seminal works published 75 and 50 years ago, are still inspirational today for the conceptual basis he provided for the force of infection, and the pitfalls and problems he identified. We have described not only the various extensions those standing on the shoulders of Muench have proposed, but also noted that we are still trying to deal with the same pitfalls and problems already identified by Muench.

There appears to have been an increased interest in developing approaches for the estimation of the force of infection since the mid-1980s[71]. We hope the guidance we provided will be useful for researchers to decide, after exploration with a nonparametric method, which of the parametric methods is best suited for the dataset under consideration.
References

Figures

Figure 1: Muench’s catalytic model for $\lambda = 0.15$ and various choices for k and l (see equation (i)).
Figure 2: UK Rubella (left panel) and Belgium Parvovirus B19 (right panel) infection by age (years): the observed seroprevalence per integer age-value with size proportional to the sample taken (•), the fitted seroprevalence curve (—, upper curve) and the FOI curve (--; lower curve). Four different models were used: Muench’s constant FOI model (black curves); Farrington’s exponentially damped model (red curve), a spline model (green curve) and its monotonized version (green-blue-green curve) as applied by Hens et al (2008). Note that, by definition, the latter curve (partly) overlaps with the green curve for Rubella (parvovirus B19).
Figure 3: A practical guide to estimate the FOI from seroprevalence data with references to the literature on what to do and how to do it.
<table>
<thead>
<tr>
<th>Terminology</th>
<th>Description</th>
<th>Common synonyms</th>
</tr>
</thead>
<tbody>
<tr>
<td>basic reproduction number R_0</td>
<td>the number of secondary cases one typical infectious individual produces during his/her entire infectious period in a completely susceptible population</td>
<td>- basic reproductive number, basic reproductive rate</td>
</tr>
<tr>
<td>censoring</td>
<td>when the event time is not exactly known, it is either left-, right- or interval-censored, according to whether the event has occurred, has not occurred or occurred in a specific time interval</td>
<td></td>
</tr>
<tr>
<td>effective reproduction number R_e</td>
<td>the number of secondary cases one typical infectious individual infects during his/her entire infectious period in a given population</td>
<td>- effective reproductive number, effective reproductive rate</td>
</tr>
<tr>
<td>force of infection</td>
<td>per capita rate at which a susceptible individual acquires infection</td>
<td>- effective contact rate (as Muench initially called it)</td>
</tr>
<tr>
<td>generalized linear model</td>
<td>a flexible generalization of ordinary regression models where the distribution of the outcome variable is linked to the linear predictor through a function called the link function.</td>
<td>- the Binomial regression model is a specific type of generalized linear model</td>
</tr>
<tr>
<td>monotonicity assumption</td>
<td>the property of preserving an increasing order, i.e. being a non-decreasing function</td>
<td>- monotonically increasing</td>
</tr>
<tr>
<td>relative deviance</td>
<td>goodness of fit measure defined as the deviance divided by the degrees of freedom, i.e. the difference of the number of observations</td>
<td></td>
</tr>
</tbody>
</table>
and the number of parameters used in the model.

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>time homogeneity</td>
<td>not depending on time; time-invariant (not to be confused with age independency)</td>
<td>steady state</td>
</tr>
<tr>
<td>WAIFW matrix</td>
<td>‘who acquires infection from whom matrix’: a matrix of transmission rates by categories of infectious and susceptible individuals (usually age-structured)</td>
<td>transmission matrix</td>
</tr>
<tr>
<td></td>
<td></td>
<td>beta-matrix</td>
</tr>
</tbody>
</table>

Table 1: Glossary of words in alphabetical order.
<table>
<thead>
<tr>
<th>Reference</th>
<th>FOI</th>
<th>Focus</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muench (1934)</td>
<td>Constant</td>
<td>Estimating a constant FOI from summation data</td>
<td>Yellow fever protection test results; tuberculin test results; incidence data on whooping cough and chicken-pox</td>
</tr>
<tr>
<td>Wilson and Worcester (1941)</td>
<td>Constant</td>
<td>Comparison of the model of Muench to the work of Collins on incidence data</td>
<td>Incidence data on measles</td>
</tr>
<tr>
<td>Griffiths (1974)</td>
<td>Linear</td>
<td>Linear FOI</td>
<td>Incidence data on measles</td>
</tr>
<tr>
<td>Grenfell and Anderson (1985)</td>
<td>Polynomial</td>
<td>Estimating an age-dependent FOI from incidence or serological data</td>
<td>Incidence data on measles, Serological data on measles</td>
</tr>
<tr>
<td>Farrington (1990)</td>
<td>Nonlinear: exponentially damped linear model</td>
<td>Estimating an age-dependent FOI</td>
<td>Serological data on measles, mumps and rubella</td>
</tr>
<tr>
<td>Keiding (1991)</td>
<td>Nonparametric estimation using kernel methods</td>
<td>A statistical perspective on estimating incidence and prevalence from serological and case notification data</td>
<td>Incidence data on hepatitis A, and incidence and prevalence of other non-infectious disease data</td>
</tr>
</tbody>
</table>

Table 2: Historical overview of key-contributions to the estimation of the FOI from summation data in the 20th century.
Conflicts of interest statement

None declared.

Authors' contributions

All authors drafted the manuscript. NH conducted the statistical analyses.

Acknowledgments

We thank the editor and both referees for their valuable suggestions that have led to an improved version of the manuscript. This work was supported by research project [MSM 0021620839], funded by “SIMID”, a strategic basic research project funded by the institute for the Promotion of Innovation by Science and Technology in Flanders (IWT) [project number 06008]; by the Fund of Scientific Research (FWO, Research Grant G039304) in Flanders, Belgium; and by the IAP research network [nr P6/03] of the Belgian Government (Belgian Science Policy). The R-code used to analyze the datasets in this manuscript is available from the authors.